PRIOR INFORMATION IN STOCHASTIC OPTIMIZATION: QUASIGRADIENT METHODS

Authors

  • Francisco Venegas-Martínez Centro de Investigación en Finanzas, Tecnológico de Monterrey, Campus Ciudad de México
  • Gilberto Pérez-Lechuga Centro de Investigación Avanzada en Ingeniería Industrial, Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.21919/remef.v2i2.151

Keywords:

Stochastic quasigradient methods, Information theory

Abstract

In this paper, we extend the stochastic quasigradient method when there is prior information on the region where descent directions are likely to be found. Our extension uses maximum entropy and minimum cross-entropy subgradient estimators that incorporate prior information in the form of expectations. We also analyze a number of prior information patterns and provide the convergence conditions for the proposed method. Finally, we obtain a limiting distribution representation for the expected information, which is provided by the sequence of subgradient estimators generated by the proposed method.

Downloads

How to Cite

Venegas-Martínez, F., & Pérez-Lechuga, G. (2017). PRIOR INFORMATION IN STOCHASTIC OPTIMIZATION: QUASIGRADIENT METHODS. Revista Mexicana De Economía Y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), 2(2). https://doi.org/10.21919/remef.v2i2.151

Issue

Section

Artículos

Most read articles by the same author(s)