ESTABILIDAD Y CONVERGENCIA EN EL MODELO CLÁSICO DE CRECIMIENTO DE LA POBLACIÓN

Authors

  • José Carlos Ramírez Departamento de Economía, Tecnológico de Monterrey, Campus Ciudad de México
  • José B. Morelos CEDDU, El Colegio de México, A . C.

DOI:

https://doi.org/10.21919/remef.v1i4.141

Keywords:

Tendencias demográficas, Crecimiento económico, Análisis del crecimiento

Abstract

This paper proposes a new approach to analyze the classical model of population growth. By using the Verhulst equation we model Malthus' population principle and state the stability and convergence conditions of Ricardo's model of economic growth. Our point of view is that Malthus and Ricardo developed the first aggregate model in which the economic and demographic variables can be explicitly related. In fact, recent models of economic growth analize that dual relation by incorporating Malthus' population principle into their theoretical frameworks in different fashions.

How to Cite

Ramírez, J. C., & Morelos, J. B. (2017). ESTABILIDAD Y CONVERGENCIA EN EL MODELO CLÁSICO DE CRECIMIENTO DE LA POBLACIÓN. Revista Mexicana De Economía Y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), 1(4). https://doi.org/10.21919/remef.v1i4.141

Issue

Section

Artículos