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Abstract

It
 is widely known that the common risk-factors derived from PCA beyond 
the first eigenportfolio are generally difficult to interpret and thus 
to use in practical portfolio management. We explore an alternative 
approach (HPCA) which makes strong use of the partition of the market 
into sectors. We show that this approach leads to no loss of information
 with respect to PCA in the case of equities (constituents of the 
S&P 500) and also that the associated common factors admit simple 
interpretations. The model can also be used in markets in which the 
sectors have asynchronous price information, such as single-name credit 
default swaps, generalizing the works of Cont and Kan (2011) and Ivanov (2016). 
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Resumen

Es
 ampliamente conocido que los factores de riesgo comunes derivados del 
PCA más allá de la primera eigenportafolio son generalmente difíciles de
 interpretar y, por lo tanto, de utilizar en la gestión práctica de la 
cartera. Exploramos un enfoque alternativo (HPCA) que hace un fuerte uso
 de la partición del mercado en sectores. Demostramos que este enfoque 
no conduce a la pérdida de información con respecto al PCA en el caso de
 la renta variable (constituidos por el S&P 500) y también que los 
factores comunes asociados admiten interpretaciones simples. El modelo 
también se puede utilizar en mercados en los que los sectores tienen 
información asincrónica de precios, como single-name swaps de 
incumplimiento de crédito, generalizando las obras de Cont y Kan (2011) e Ivanov (2016). 

Clasificación JEL: 			
				
C02; C65; G24.
Palabras clave: 			
				
rendimiento; bloques; PCA; HPCA; portafolio.



1 Introduction



 Principal Components Analysis (PCA) and random matrix theory (RMT) have become widespread tools for data analysis. PCA (Joliffe (2002) [6])
 provides a mathematical and objective approach to extract economic 
information from the correlation matrices of asset returns. In this 
approach, the analyst extracts common risk factors from the eigenvectors
 and eigenvalues of the correlation matrix.
The first eigenvector of the correlation of stock returns corresponds to the solution of the variational problem 

				
V(1)=argmax  {VtRV;||V||=1}.  
(1)



			
 Here, 
					R
				 is the correlation matrix of daily returns and 
					||.||
				 is the Euclidean norm in 
					Rn
				, 
					n
				 being the total number of assets. Equation 1
 shows that the principal eigenvector is represents the direction (line)
 which “captures the most variance” as described by the correlation 
matrix. The first eigenvector satisfies 

				
RV(1)=λ(1)V(1)  
(2)



			
PCA also finds recursively additional (orthogonal) directions beyond 
					V1
				 which capture the most variance. The other eigenvectors and eigenvalues are computed in the same way as Eq. (1)) with the maximization to the sub-space orthogonal to the space spanned by the ones computed previously, i.e, 

				
V(k)=argmax  {VtRV;||V||=1,V(k)tV(l)=0,  1≤l<k}.  
(3)



			
 The eigenvalues satisfy 
					λ(1)>λ(2)≥...≥λ(n)
				. Assume that the data corresponds to the daily returns of a 
group of stocks. The Karhunen-Loeve representation of the standardized 
returns is

				
Xj=∑k=1nλ(k)Vj(k) F(k)  
(4)



			
 where 

				
F(k)=1λ(k)∑i=1nVi(k) Xi.  
(5)



			
By construction, 
					Fk
				 are uncorrelated and have variance 1. Since these random 
variables are linear combinations of the daily standardized returns of 
the assets, we call them (standardized) “eigenportfolio (EP) returns”, 
with the caveat that the actual portfolio “weights” are obtained by 
dividing each entry of the eigenvector by the volatility of the asset (Avellaneda and Lee 2008, 2010) [1].2
			
PCA is a framework for learning about the 
common factors which affect the returns of a given group of assets. The 
first eigenportfolio, associated with the r.v. 
					F1
				, is a common risk factor which explains the maximum variability. We can write a one-factor model for each asset, namely 

				
Xj=βjF(1)+ϵj  
(6)



			
 where 
					βj
				 is the regression coefficient of the standardized return on the first EP. The “residuals” 
					ϵj
				 in equation 6 are uncorrelated with 
					F1
				, which is nice. However, they are generally correlated for different stocks.
The regression coefficients satisfy 

				
βj=λ(1) Vj(1),    j=1,...,n.  
(7)



			
 In the case of economic data, which is 
noisy, the consensus is to disregard EPs which correspond to low 
eigenvalues. In a celebrated paper, Laloux et al (2000) [7]
 proposed to use random matrix theory (RMT) to establish a cutoff in the
 number of EPs use to model the standardized returns, namely 

				
Xj=∑k=1mβj(k) F(k)  +ϵj  
(8)



			
 where 
					βjk
				 are “factor loadings”and (with a slight abuse of notation) 
					ϵj
				 are residuals obtained after “defactoring” relatively to the 
					m
				 eigenportfolios. The number 
					m
				 is a cutoff which is to be determined from the context.
According to [7],
 the eigenvalues of a pure noise matrix follow the Marcenko-Pastur 
distribution and have a spectrum which, for large matrices,is 
asymptotically bounded from above by 
					λ+,MP=(1+n/T)2
				, where 
					T
				 is the number of observations. Asymptotics should hold in the limit 
					n/T→γ
				 (a constant) as 
					n
				 and 
					T
				 both tend to infinity. The way to use RMT to calculate the cutoff is to construct the correlation matrix 
					Ri,j(m)=Corr(ϵi,ϵj)
				 for m large enough and verify that its top eigenvalue is of the order of 
					λ+,MP
				. One can also compare the empirical distribution of eigenvalues with the Marcenko-Pastur probability distribution.
PCA
 aided by RMT is an elegant approach to analyzing correlation matrices 
of financial data and can also be applied to may areas of science. The 
main strength of the method is that it can detect common risk factors 
based on a matrix of asset returns, without any additional information. 
In other works, PCA “lets the data speak for itself”. Generally 
speaking, PCA explains the most variability with the smallest number of 
factors. Most studies tend to justify the PCA approach by recognizing 
that it produces some factors which have ex-post economic interpretations, such as equating 
					EP1
				 with the Sharpe Market Portfolio (Boyle 2017) [2], or attempt to interpret higher-order EPs in terms of industry sectors [1].
 In the case of fixed-income, the EPs are often identified with 
“parallel shifts”, or with long-term vs short-term oscillations of the 
yield curve (Litterman and Scheinkman, 1991) [8]. 

2 The identification problem




 One of the frequent criticisms of PCA in Finance is that the common 
risk factors generated by higher-order eigenportfolios - aside from the 
first eigenportfolio - are difficult to interpret and appear to be 
unstable across time. We call this the identification problem. Because of it, many portfolio managers favor traditional factor models such as Barra; see Shkolnik et. al. (2016) [9] for alternative approaches to model financial correlations.
The
 identification problem in PCA reflects the uncertainty, or 
unreliability, of cross-asset correlations. From a practical point of 
view, as the size of trading universe increases, the correlations of 
assets which are not economically related (a tech stock with an energy 
stock, or with a foreign stock) are difficult to quantify and may be 
noisy. This could be due to several reasons: the lack of “explanation” 
for the relation between the stocks, or perhaps that their prices are 
not sampled simultaneously (e.g. if they are end-of-day prices in 
different time-zones) or that the number of observations is not large 
compared to the number of assets considered. For example, empirical 
correlations of price changes of out-of-the money options with different
 underlying assets may not be as reliable or significant as the data 
would suggest.
To mitigate the identification 
problem, we should seek a factor model which can recognize the economic 
nature or function of the asset as well as the statistical properties of
 returns. This lead us to the model described hereafter.

3 Hierarchical PCA




 The hierarchical PCA (HPCA) applies to markets which can be partitioned
 into several sectors or asset-classes. Consider first an abstract 
market, in which the empirical data matrix of asset returns, with 
dimensions 
					T×n
				, can be partitioned into “blocks of columns” labeled 
					k=1,2,...,b
				. These blocks have dimensions 
					T×nk
				 with 
					k=1,2,...,b
				. Each block represents data sampled from a sector. For 
simplicity, we assume that the indices of the securities are organized 
so that blocks which are adjacent to one another in the matrix and do 
not overlap. We have a few concrete situations in mind:

				
	The
 blocks represent data of industry sectors for equities in the same 
economy (e.g. sectors associated with the 500 or so stocks in the 
S&P 500 index). In this case, the columns of a block correspond to 
the historical standardized returns of the stocks in the sector observed
 over 
								
									T
								
							 consecutive dates.

	Each block 
represents a stock or index and all of the derivatives written on it. In
 this case, the columns in a block represent the returns of the stock 
and the changes of the implied volatilities of options with different 
strikes and tenors written on the stock (Dobi 2015 [4]).

	In
 the context of credit derivatives, the data represents changes in 
credit spreads for CDS. The blocks correspond to CDS referencing the 
same obligor (issuer) but with different tenors (Cont and Kan (2011) [3], Ivanov (2017) [5]). 




			
Define the function 
					Ij=k
				 if asset 
					j
				 is in block 
					k
				. According to Eq. (4) we can write, for each asset in the “big universe”, 

				
Xj=βj F(1,I(j))+ϵj,  
(9)



			
 where 
					βj
				 is the regression coefficient of the returns of asset 
					j
				 on the first factor of block 
					Ij
				 and 
					ϵj
				 is the residual.
We shall make the following assumption (“HPCA assumption”): 

				
 If   I(i)≠I(j),   then   Corr(ϵi,ϵj)=0.  
(10)



			
 The assumption states that residuals are uncorrelated if their assets belong to different sectors. Equation (9)
 defines the asset statistics within each block exactly, and the model 
is completed by specifying the joint statistics of the factors 
					F1,k,  k=1,2,...,b.
				 The HPCA assumption says nothing new regarding intra-block 
correlations, which are set equal to the empirical correlations between 
asset returns within the same sector or block. Of course, the 
intra-block correlations could be further denoised using RMT if 
necessary ([4]).
Using the HPCA assumption Eq. (10), the proposed model has the modified correlation matrix for asset returns:

				
R~ij=Rij   if     I(i)=I(j)  




			

				
=βi βj ρ¯I(i)I(j)   if     I(i)≠I(j)  
(11)



			
where 
					ρ¯k,k'=Corr(F(1,k),F(1,k'))
				.
Proposition 1 
 Eq. (11) corresponds to a symmetric non-negative matrix with
					R˜ii=1
				for all
					i
				. In particular, it corresponds to the correlation matrix of a system of standardized random variables.
Proof. To check non-negative definiteness, note that for all 
					θ ∈ Rn
				 we have 

				
θt  R~θ=∑k=1b∑I(i)=I(j)=kθiθj(Rij-βiβj)+∑k,k'=1b(∑I(i)=kθiβi) (∑I(j)=k'θjβj)  ρ¯k,k'.  
(12)



			
 For any 
					k
				, the matrix 
					Rij−βiβj
				 restricted to sector 
					k
				 is identical to the sector correlation, except for the fact that the eigenvalue corresponding to 
					V1,k
				 is set to zero. In particular, it is non-negative definite. Moreover, the matrix 
					ρ¯k,k'
				 is also a correlation matrix, so it is non-negative definite. Since both summands are non-negative it follows that 
					θt R˜θ≥0
				 for all 
					θ ∈ Rn
				.
A concrete implementation of the data model is achieved as follows: let 
					ψ1,...,ψb
				 be Gaussian random variables with mean zero and covariance matrix 
					ρ¯
				, and let 
					ζik  ,i:I(i)=b,  k=1,...,b
				 be i.i.d. standardized Gaussian random variables which are independent of the 
					ψ
				’s. The data model is 

				
Xi=βi  ψI(i)  +∑{j:j≥2,  I(j)=I(i)}γij  ζj I(i)  
(13)



			
The random variables need not be necessarily 
Gaussian: they can be multivariate Student-t, or they can be transforms 
of arbitrary distributions connected by a Gaussian or t-Copula; see for 
instance [5].
The multivariate distribution associated with HPCA presents an alternative model to the classical PCA (Eq. (8)).
 It has a tree structure: in the equity example discussed below, the top
 vertex corresponds to the “market”; there are 11 branches corresponding
 to industry sectors, and each of the 11 vertices has branches 
corresponding to the stocks in each sector.
Hierarchical
 models with more than two layers arise naturally. For instance, HPCA 
can be used to model “world portfolios”, in which the first layer 
consists of countries or regions, the second to industry sector indices 
in each country, and the third layer could describe the individual 
securities in each region/sector.
For another 
useful example, consider a stock market in which stocks belong to 
different industry sectors, and then, include columns associated with 
equity options returns. In this case, the tree has three layers because 
we can associate to each stock an additional sub-group: the block 
consisting of the returns of implied volatilities (on a constant 
delta/time-to-maturity grid) and the stock returns. Now the root 
corresponds to the full market, the first layer corresponds to industry 
sectors, the second layer corresponds to stocks and the third layer 
represents an individual name with all the associated option-implied 
volatilites.
A similar approach works for credit 
derivatives. In this case, the returns of the CDS with different tenors 
referencing each obligor constitute a block associated with an obligor. 
These blocks can be grouped by industry sectors or, alternatively, 
blocks could be generated according to membership in a credit index 
(CCX.IG, CDX.HY, CDX.HV), or both; [5].
In
 summary, if financial data can be grouped into blocks or sectors with 
clear economic interpretation, with multiple instruments associated with
 each block, we can generate a data model with tree-like structure from 
the HPCA assumption in Eq. (10). This 
approach combines information available for each asset (sector, 
sub-sector, reference obligor, option underlying asset) with the 
explanatory power of PCA. For simplicity, we will consider the analysis 
of a two-layer HPCA. Adding more layers is mathematically 
straightforward. 

4 Spectral analysis



 The HPCA assumption Eq. (10) gives rise to explicitly computable eigenvalues and eigenvectors for the matrix 
					R˜
				 defined in Eq. (11).
Proposition 2.

				
	1. For each sector 
								
									k=1,...,b
								, let
								
									λ(1,k)  >  λ(2,k)≥  ...  ≥λ(nk,k)
								 
							denote the 
								
									nk
								
							 eigenvectors of the sector correlation matrix, ordered from largest to smallest, and let 
								
									Vi,k
								
							  be the corresponding eigenvectors. Define the n-dimensional vectors




			

							
								
Wj(i,k)=Vj(i,k)     if     I(j)=k  




							
						

				
=0         if     I(j)≠k,  
(14)



			

				
	which correspond to the embedding of the sector-level eigenvectors, 
								
									V(i,k)  ∈  Rnk
								
							, into the large space 
								
									Rn
								. The vectors 
								
									W(i,k),  i=1,...,nk,    k=1,...,b
								
							 form an orthogonal basis of 
								
									Rn
								.




			

				
	2. The subspace 
								
									Ω
								
							 of
								
									Rn
								
							generated by the vectors 
								
									W1,k,  k=1,...,b
								, viz.




			

				
Ω={∑k=1bαkW(1,k):(α1,...,αb)∈Rb},  
(15)



			

				
	is invariant under the action of 
								
									R˜
								
							 viewed as an operator from 
								
									Rn
								
							 to 
								
									Rn
								. 

	3. Consider the 
								
									b×b
								
							 matrix




			

				
Mk,k':=λ(1,k)λ(1,k')ρ¯k,k'.  
(16)



			

				
	Let 
								
									μ1,...,μb
								
							 denote the eigenvalues of 
								
									M
								, ranked in decreasing order, and let 
								
									(αk=α1k,....,αbk)  k=1,...,b
								
							 represent the corresponding normalized eigenvectors (defined up to sign). The vectors




			

				
W~(1,k)=∑p=1bαp(k) W(l,p)  
(17)



			

				
	are eigenvectors of 
								
									R˜
								, with corresponding eigenvalues 
								
									μk
								, for 
								
									k=1,...,b
								. 

	4. For each sector 
								
									k
								
							 and each 
								
									j,  2≤j  ≤nk
								, the vector 
								
									Wj,k
								
							 is an eigenvector of 
								
									R˜
								, with eigenvalue 
								
									λj,k
								. 




			
 This proposition completely 
characterizes the eigenvalues and eigenvectors of the HPCA correlation 
matrix relating them to the eigenvalues and eigenvectors of sector PCAs.3
 Thus, the HPCA assumption eliminates the identification problem for 
common factors: “eigenportfolios” have concrete meanings attached to the
 information about the correlations of sectors. In the examples to 
follow, we shall compare HPCA with PCA and show that the former is an 
excellent substitute for the full empirical correlation matrices when we
 model multivariate financial data.

5 Application: S&P 500 constituents



 We consider data for 
					n=434
				 equities which are constituents of the S&P500 index. The
 data ranges from February 22, 2012 to February 16, 2018. We consider 
the correlation matrix of standardized stock returns, and define the 
sectors as General Industry Classification groups (GICs), so 
					b=11
				; see Table 1.

				
Cuadro 1. 
			
GIC sectors and number of companies in each sector. 

	GIC (
										k
									)	Description	Number of companies (
										nk
									)
	1	Consumer Discretionary	73
	2	Consumer Staples	56
	3	Energy	27
	4	Financials	59
	5	Health Care	51
	6	Industrials	57
	7	Information Technology	58
	8	Materials	23
	9	Real Estate	27
	10	Telecommunication Services	3
	11	Utilities	28



			
5.1 Eigenvalues



 We considered the full empirical correlation matrix4 and the HPCA correlation matrix 
						R˜
					 (“HPCA matrix”). The spectrum of the HPCA matrix is very similar than the one of the empirical correlation matrix 
						R
					, with the difference that the latter eigenvalues at the top
 of the spectrum are slightly larger the eigenvalues of the HPCA matrix.
 This is due to the fact that PCA explains more variance with fewer 
common factors (see Figure (5.1)). On the other hand, the sum of eigenvalues is equal to 
						n=434
					 in both cases, which means that for high enough rank, the 
higher-order eigenvalues of HPCA are larger than those of PCA. The 
lowest eigenvalues of 
						R
					 are infinitesimal, and the latter matrix is degenerate. At 
the bottom of the spectrum (not shown here) the HPCA spectrum has much 
higher eigenvalues (separated from zero) than PCA, since they are 
bounded from below by the lowest eigenvalue from all the sectors. Thus, 
the HPCA matrix is better conditioned than the full empirical matrix. 

					

  



Figure 1. 
		
X=axis: rank (
									k
								) of the eigenvalues, sorted in decreasing order. Y-axis: sum of the first 
									k
								 eigenvalues divided by 
									n=434
								. The PCA curve rises faster than HPCA, due to the nature of the PCA algorithm.



				

					
Cuadro 2. 
			
Top 25 eigenvalues of PCA and HPCA, sorted in decreasing order.

	PCA	HPCA	Eigenportfolio	 	PCA	HPCA	Eigenportfolio
	138.87	137.19	Multi-sector	 	2.79	2.18	Industrials
	26.84	20.70	Multi-sector	 	2.52	2.15	Consumer Disc.
	11.88	8.18	Multi-sector	 	2.46	2.14	Healthcare
	7.70	5.91	Multi-sector	 	2.36	2.09	Inf. Technology
	6.87	4.93	Multi-sector	 	2.32	2.03	Multi-sector
	5.75	3.69	Multi-sector	 	2.24	1.94	Technology
	5.16	3.38	Consumer Disc.	 	2.20	1.93	Industrials
	4.70	2.88	Multi-sector	 	2.18	1.92	Energy
	3.90	2.80	Financials	 	2.13	1.80	Consumer Disc.
	3.61	2.68	Multi-sector	 	2.06	1.59	Inf. Technology
	3.48	2.67	Healthcare	 	2.01	1.57	Industrials
	3.02	2.53	Cons. Cyclical	 	1.96	1.57	Healthcare
	2.87	2.25	Healthcare	 	 	 	 

 The column “Eigenportfolio” gives an interpretation of the corresponding HPCA eigenportfolio. “Multi-sector” corresponds to a 
										
											μk
										
									-eigenvalue and eigenvector, which are combinations of the first eigenportfolios for each of the 11 sectors (space 
										
											Ω
										). The other eigenvalues/eigenvectors correspond to 
higher-order eigenvalues/eigenvectors for individual GIC sectors. Notice
 that, after sorting, some of the GIC eigenportfolios are more important
 in terms of explaining variability than multi-sector portfolios.



				

5.2 Eigenvectors



 We turn to empirical analysis of the eigenvectors of the HPCA and the empirical correlation matrices, i.e. to the issue of identification problem for PCA/HPCA. The first eigenvectors for HPCA and PCA are plotted in Figures (5.2) and (5.2). Since the first eigenvector of 
						M
					 has positive entries and the first eigenvectors of sector 
correlations also have positive entries due to the positive correlations
 of stocks ( [1],[2] ; EV1 loadings are positive for both PCA and PCA. Figure (5.2)
 superimposes both eigenvectors. The ordering of the X-axis is 
alphabetical in each sector and sectors are grouped displayed in 
increasing order of GIC according to Table (5). The two eigenvectors are
 practically indistinguishable in the sense that their average 
difference is of order 
						1.0×10−5
					 and the standard deviation (centered RMS distance) is 
						5.3×10−3
					. The RMS error is one order of magnitude smaller than the 
average size of each entry in the eigenvectors which is approximately 
equal to 
						4.7×10−2
					, in both cases.
This identifies the 
first eigenportfolio of the market as a “portfolio of first 
eigenportfolios” of different sectors (GICs). The difference in 
explanatory power between the two eigenvectors is the difference between
 the corresponding eigenvalues, divided by the number of stocks, namely 
						138.87−137.19/434=0.39%
					, which is negligible in this context. In particular, this 
suggests that using the first HPCA eigenportfolio as a proxy for the 
market portfolio gives rise to a better description of the market 
portfolio and an easier way to allocate to each stock. For instance, the
 first EV could be proxied by a capitalization-weighted sector ETF.5.
For eigenvectors 2 through 5 Figures (5.2) through (5.2),
 we find that the PCA eigenvectors correspond to “noisy versions” of the
 corresponding HPCA eigenvectors. The latter are essentially long-short 
sector eigenportfolios. The discrepancy increases when we consider 
higher-order eigenvalues, beyond 5. Eigenvectors #6 aren’t similar as 
shown in Figure (5.2). The PCA eigenvector 
contains both positive and negative signs within the Consumer 
Discretionary sector. Eigenvector 7 in HPCA is the first which is 
concentrated in a single sector, which is Consumer Discretionary (Fig. (5.2). The remaining eigenvectors up to rank 10 are displayed in Figures (5.2) to (5.2).
The
 main conclusions are: (a) most of the top eigenvalues and corresponding
 eigenvectors are related to the inter-sector correlation 
						ρ¯
					. This provides an interpretation for these eigenportfolios,
 or common risk factors, as “portfolios of long-only sector portfolios”.
 (b) The remaining eigenvectors may be quite different. The HPCA defines
 the factors into “sector-sector” and “long-short intra-sector”. PCA 
eigenvectors, in contrast, become increasingly difficult to interpret as
 simple sector-sector interactions or intra-sector interactions.

					

  



Figure 2. 
		
First eigenvector of HPCA. Variance explained= 30%. 



				

					

  



Figure 3. 
		
Comparison of the first 
eigenvectors of HPCA and PCA, which have approximately the same 
explanatory value. Their Euclidean distance (RMS error) is 
									5.5×10−3
								, which is an order of magnitude smaller than the average entry size. 



				

					

  



Figure 4. 
		
Second eigenvector of HPCA. The variance explained is 4.7% for HPCA and 6.1% for PCA. 



				

					

  



Figure 5. 
		
Comparison of the second eigenvectors. The PCA eigenvector is essentially a noisy version of the HPCA eigenvector. 



				

					

  



Figure 6. 
		
The third eigenvectors of HPCA: one can observe again that PCA EV3 is a noisy version of HPCA EV3. 



				

					

  



Figure 7. 
		
The fourth eigenvectors. Notice the similar loadings for sectors. 



				

					

  



Figure 8. 
		
The fifth eigenvectors. Notice the similar loadings for sectors. 



				

					

  



Figure 9. 
		
The sixth eigenvectors. In
 this case, PCA presents a different shape and is not “localized” on any
 sector. The leftmost part of the PCA eigenvector corresponds to 
Consumer Discretionary. 



				

					

  



Figure 10. 
		
The seventh eigenvectors. 
The HPCA is essentially an eigenvector localized on the Consumer 
Discretionary sector (the second eigenvector of this sector. The PCA 
eigenvector is completely delocalized. 



				

					

  



Figure 11. 
		
Eight eigenvectors. 



				

					

  



Figure 12. 
		
Ninth eigenvectors. The HPCA eigenvector is localized in the Financials sector. 



				

					

  



Figure 13. 
		
Tenth eigenvectors. 



				


6 Analysis of residuals via RMT & Conclusion



 To further evaluate the HPCA, we considered both models (HPCA,PCA) with a cutoff 
					m=30
				, and compared the multivariate statistics. We expect that after removing 
					m≈30
				 eigenvectors, the correlations of the residuals (both intra- and inter- sector) should be small.
Empirically,
 the top eigenvectors of the correlation matrices of residuals are 
approximately 6.8 (HPCA) and 7.7 (PCA), which correspond to an 
approximate average correlation of 
					7.3/434=1.7%
				. We compared the histograms of the eigenvalues for the 
corresponding correlation matrices and found that they are very near 
each other. We also compared the histograms with a discretization of the
 Marcenko-Pastur distribution (mimicking the comparable histogram for 
the large-matrix limit), suggesting that the residuals behave like a 
random matrix in both models; see Fig. (6). The majority of the lines, in both cases, are below the Marcenko-Pastur cutoff 
					λ+=2.36
				, as postulated by RMT, and have comparable sizes to the MP 
distribution. There are, nevertheless, some lines above the MP threshold
 in both models (which are essentially equal), but they decreasing in 
magnitude as 
					λ
				 increases,and could perhaps be interpreted as finite-size fluctuations.
This
 calculation suggests that using the full empirical correlation matrix 
is not more informative than using the HPCA model, which uses only the 
sector correlation matrices, and in which intra-sector correlations are 
derived from the correlations of the EV1 for different sectors. Clearly,
 the HPCA provides a simpler description of common risk factors than 
PCA. The HPCA is therefore a viable alternative to PCA in the analysis 
of multivariate data in Finance, which should be of interest for 
asset-allocation and portfolio risk-management. 

				

  



Figure 14. 
		
Histograms of residuals 
for HPCA (blue) and PCA (orange) after removing the first 3 
eigenportfolios. For reference we display the “histogram” of the 
Marcenko-Pastur (MP) for corresponding to the same ratio of rows to 
columns (
								1508×434
							). The histograms of HPCA and PCA are comparable. Both are
 localized below the critical MP level of 2.36, with a smooth “leakage” 
as expected due to finite-size effects. 
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NOTES
[1]  No declared funding source for research development
[2] 
 We consider correlations instead of covariances because it 
mathematically simpler to work in dimensionless units, i.e. to reduce to
 the case when all the volatilities are equal to one.
[3]  The proof of Proposition 2 is straightforward: one just has to observe that 
						
							βi=αIiVi1,Ii
						
					 and calculate explicitly the action of 
						
							R˜
						
					 on each of the vectors 
						
							Wj,k
						.
[4]  In the sequel we refer to the full empirical correlation matrix as the “PCA matrix”, for short.
[5]  A careful analysis of this idea, including out-of-sample tracking error analysis, will be done in a separate publication.
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