
			

				
			

			

			

Research papers

			
			
			
				DOI: 10.21919/remef.v15i1.376
Financial time series forecasting using Artificial Neural Networks
Predicción financiera de series de tiempo utilizando Redes Neuronales Artificiales

Roberto Gallardo Del Angel [1] [*]

[1] Universidad Veracruzana, México

					[*] Faculty of Economics, Universidad Veracruzana. Avila Camacho s/n esquina Avenida Xalapa. Xalapa, Veracruz. Mexico. Email: rogallardo@uv.mx.

Abstract

This
 paper contains a financial forecast using Artificial Neural Networks.
The analysis uses the traditional Backpropagation algorithm, followed by
 Resilient Backpropagation, to estimate the network weights. The use of
Resilient Backpropagation Neural Networks solves the learning rate
determination problem. Both algorithms are consistent and offer similar
predictions. Six major Stock Exchange Market indices from Asia, Europe,
and North America were analyzed to obtain hit ratios that could then be
compared among markets. A dependent variable was constructed using daily
 close prices, which was then used for supervised learning and in a
matrix of characteristic variables constructed using technical analysis
indicators. The time series dataset ranges from January 2000 to June
2019, a period of large fluctuations due to improvements in information
technology and high capital mobility. Instead of prediction itself, the
scientific objective was to evaluate the relative importance of
characteristic variables that allow prediction. Two contribution
measures found in the literature were used to evaluate the relevance of
each variable for all six financial markets analyzed. Finding that these
 measures are not always consistent, a simple contribution measure was
constructed, giving each weight a geometric interpretation. Evidence is
provided that the Rate-of-Change (ROC) is the most useful prediction
tool for four aggregate indices, the exceptions being the Hang Seng and
EU50 indices, where fastK is the most prominent tool.

JEL Classification:
				
G11; G15; G17.
Keywords:
				
Financial Forecasting; Machine Learning; Neural Networks.

Resumen

Este
 documento contiene una predicción financiera utilizando Redes
Neuronales Artificiales. Hacemos nuestro análisis utilizando el
algoritmo de Backpropagation tradicional y luego Backpropagation
Resiliente para estimar los pesos en las redes. El uso del algoritmo de
Bacpropagation Resiliente permite resolver el problema de la
determinación de la tasa de aprendizaje. Ambos algoritmos son bastante
consistentes y arrojan predicciones similares. Analizamos seis índices
principales de los mercados bursátiles de Europa, Asia y América del
Norte para generar índices de aciertos que puedan compararse entre
mercados. Usamos precios de cierre diarios para construir una variable
de dependiente para dirigir el aprendizaje (aprendizaje supervisado) y
una matriz de variables de características construidas utilizando
indicadores de análisis técnico. El rango de datos de la serie de tiempo
 va desde Enero de 2000 a Junio de 2019, un periodo de grandes
fluctuaciones debido a mejoras en la tecnología de la información y una
alta movilidad de capital. En lugar de la predicción en sí misma, el
objetivo científico es evaluar la importancia relativa de las variables
independientes que permiten la predicción. Utilizamos dos medidas de
contribución utilizadas en la literatura para evaluar la relevancia de
cada variable para los seis mercados financieros analizados. Descubrimos
 que estas medidas no siempre son consistentes, por lo que construimos
una medida de contribución simple que le da a cada peso una
interpretación geométrica. Proporcionamos algunas pruebas de que la tasa
 de cambio (ROC) es la herramienta de predicción más útil para cuatro
índices generales, con las excepciones siendo el índice Hang Sheng y
EU50, en donde el fastK es el más destacado.

Clasificación JEL: 			
				
G11; G15; G17.
Palabras clave: 			
				
Pronóstico Financiero; Aprendizaje Automático; Redes Neuronales.

1 Introduction

 This work is about Artificial Neural Networks (ANN) and their
applications to financial time series forecasting. We use two types of
algorithms, backpropagation (BP) and resilient backpropagation (RBP), to
 produce the weights needed for prediction. The final scientific
objective is to use the network weights to estimate some measures of
relative importance. One of the main difficulties when using
non-parametric methods such as ANN is the interpretation and meaning of
the weights (parameters) obtained. Though interpretation is difficult
due to the nature and purpose of machine learning methods, we intend to
offer some conclusions on the importance of the variables used for
prediction. In this respect, ANN analysis is the method for obtaining
information about which variables are more relevant for forecasting.
The
 most common architecture for prediction in times series is the single
layer or the multi-layer perceptron feed-forward networks. When deciding
 on the activation function it is common to decide on a sigmoid type,
which is the standard when the prediction is on the range between zero
and one. The simplest and most common learning rule for forecasting is
the error-correction type. But perhaps one important parameter needed to feed our analysis is the learning rate which decides on how well the updates in the network performs.
When
 using the traditional Backpropagation algorithm we must do some
previous work in order to choose the learning rate that best fits our
model. But this could be a time consuming process and there is not
always assurance that the network will work well. One way to go around
this problem is to use a different algorithm that may endogenously
determine this learning rate. We decided to use the Resilient
Backpropagation (RBP) algorithm which offers a simple and heuristic
method to find the network weights without first determining the
learning rate.
The RBP algorithm is an improvement on traditional Neural Networks using backpropagation algorithm, first proposed by Riedmiller and Braun [14]
 in 1993. Riedmiller developed a flexible algorithm to tackle the main
problems in the traditional Backpropagation, in especial the vanishing
gradient problem and the need for cross-validation analysis for
estimating the learning rate. The new algorithm allowed for weights
backtraking and a heuristic adjustable learning rate that improved
prediction.
The Artificial Neural Networks history began perhaps since 1940’s when McCulloch and Pitts [12]
 first proposed the idea of simulating neuronal activity using
mathematical logic. But it was until early 1960’s that the idea that
machines can learn was first explored by Rosenblatt [15]
 with the creation of the Perceptron Algorithm. For the first time the
possibilities of Artificial Intelligence were recognized when this
algorithm was tested on an IBM 704 computer. Although there were great
expectation about artificial intelligence at that time, the computer
technology was not well advanced at that time to make Artificial Neural
Networks to work in their full potential. A big lap forward in ANN
research was PJ Werbos’s 1974 unpublished PhD Dissertation "Beyond
regression: new tools for prediction and analysis in the behavioural
sciences", where he first proposed backpropagation to train Neural
Networks. A detailed explanation on Backpropagation can be found also in
 Werbos [17]. Backpropagation algorithm was
 indeed a break-trough that allowed the effective use of gradient
descent method in the training of ANN.
The development of the Neocognitron by Fukushima and Miyake [4]
 inspired the creation of Convolutional Neural Networks (CNN) which are
indeed Deep Neural Networks (DNN) with multi layers but where some
hidden layers are called convolutional layers as they perform a
convolution that connects to the next hidden layers of neurons. This
type of neural networks are often used in pattern recognition problems.
In 1982 John Hopfield, with his paper Hopfield [6],
 invented the Hopfield Network with the purpose of modelling human
memory. This later was known as Recurrent Neural Network, in which time
lapses between hidden layers and neurons were important to model human
learning process and memory. Several other types of DNN with different
variations and architectures have been created in recent years. Deep
learning is currently a field very dynamic with great possibilities.
On the side of financial time series analysis, Sapankevych and Sankar [16] made a survey on the SVM (Support Vector Machines) and focused on times series prediction using SVM. Kim [11]
 is an analysis on financial time series using SVM on the Korean
composite stock exchange market and and compares the SVM results with
Artificial Neural Network (ANN) models and finds that the SVM
outperforms slightly those of ANN models. Huang et al. [7] predicted the Japanese Stock Exchange index using SVM and concluded that SVM has a better hit ratio than neural networks. Kara et al. [10]
 is a similar analysis on the Istanbul stock index using ANN and SVM.
Contrary to the previous works on financial time series, this work
concluded that the Neural Networks performed better than SVM with a
higher hit ratio. Cao and Tay [3] is an
analysis using Futures contract in the Chicago Mercantile Market using
SVM, backpropagation NN and Regularized Radial Basis function NN. Their
results also show that SVM outperforms backpropagation NN and has
similar performance against Radial Basis function NN.
This
 work shows the basic formulation of Artificial Neural Networks and
their practical application to time series. We introduce financial
forecasting using the Resilient Backpropagation Algorithm (RBP), which
was proposed by Martin Riedmiller und Heinrich Braun in Riedmiller and Braun [13] in 1992. They published their work the next year in Riedmiller and Braun [14]. This algorithm tries to solve the problem of the learning rate especially in noisy data. Igel and Husken [9] is also a work in RBP which explains the weight backtracking technique.
As
 mentioned before, the final scientific objective is to measure which
features are important for prediction in whole financial markets. Huang et al. [8]
 is a paper that includes different measures for assessing the relative
importance of each feature in the neural network prediction. The two
importance measures found in the literature are the Garson and Yoon
contribution measures but we noticed that both are not highly
correlated. The interpretation and comparison between both measures is
not straight forward and, in average, the correlation between them is
about 0.54 in our analysis. Our hypothesis is that these contribution
measures are not well suited to describe the relative importance of each
 feature. We decided to construct a simple measure in order to describe
the importance of each feature variable in the best ANN model obtained.
Given
 the above scientific objective, we do not focus in model selection
techniques. Although prediction depends on the network architecture and
other technical choices such as the learning rule or the activation
function, the main purpose is to observe which features are better for
prediction. This is information is already embedded in the data and its
complexity. Although the determination of the best model is important for prediction (e.g. evolutionary algorithms) we decided to focus on this subject in future research.
In
 this work we are going to work with ANN for binary classification with
the objective of predicting ups and downs in the stock exchange indexes.
 In the first part of this work we introduce Neural Networks and the
Resilient Backpropagation Algorithm. In the second part, we use data
from six stock exchange markets (Hong Kong, Japan, Germany, Europe50,
Canada and Mexico indexes) in order to obtain prediction on the ups and
downs on the stock indexes. The final part of this work includes an
analysis on the relative importance of the feature variables using
different contribution measures.

2 Artificial Neural Networks

2.1 The theory

 Artificial Neural Networks using the Backpropagation algorithm is a
traditional method for classification and forecasting. Though several
versions of Deep Neural Networks (DNN) are now popular powerful tools
for analysis, still the backbone behind all architectures of Neural
Networks continue to be the gradient descent method used in Feedforward
and Backpropagation algorithms. Both ANN and DNN have a wide range of
important commercial applications. There have been numerous efforts to
design artificial neural networks based on Von Neumann’s architecture,
trying to produce intelligent programs that mimic biological neural
network. Neurons are very special cells in the human brain,
interconnected with each other and responding to stimuli using chemical
and electric reactions with connections called synapses. The idea of ANN
 is to simulate neurons stimuli process and let this neurons to learn by
 themselves.
ANN can perform complex
classification problems. For a simple binary classification, the idea is
 to construct a decision function
						hx
					 to approximate the outcome or label
						y
					 (which is binary, either zero or one). The decision can be
interpreted as a simple weighted function, a linear combination of,
let’s say, two features
						x1
					 and
						x2
					:

					
h(x;θ,b)=θ1x1+θ2x2+b
(1)

				
Which can also be written in the form:

					
y=h(x;θ,b)=θTx+b
(2)

				
The main objective is to find the vector of weights
						θ
					 and the parameter
						b
					 (bias) that may be used to describe and predict the outcome
						y
					. A Neural process is a biological process that describes
how a neural cell learns. A neural cell processes information from
stimuli it receives and then uses a series of synapses to pass on new
information already processed. An ANN tries to reproduce the same
process, using inputs nodes to receive information, one hidden layer to
process the information using an activation function, and then output
nodes where the processed information is received. Given an output
						y
					 we must train our network to learn and obtain these output values. At the end, the weights
						θ
					 will be obtained and will be used for prediction.
The
 process of training a ANN will depend on the activation function we
want to use as well as the method to find the appropriate weights
recursively. Usually, we may initiate to train the ANN with random input
 values and then apply weights to every data point that will pass on
information to a hidden layer where the information will be processed by
 an activation function. Weights
						θT
					 are recalculated iteratively until convergence is achieved. It is desirable that the values we get from the decision function
						hx;θ,b
					 being in a small range, for example, between 0 and 1. One way to achieve this is to map the decision function
						hx;θ,b
					 into a new function what will give an output between 0 and 1:

					
h(x;θ,b)=g(θTx+b)
(3)

				
To represent
						g
					 as a new function of
						zx=θTx+b
					, we may start to use a sigmoid function of the type
(although there are other types of functions that may be useful to
represent
						g
):

					
g(z)=11+e-z
(4)

				
This is akin to a logistic regression function with
						gz∈0,1
					. We call this activation function because this
function will process the information and put forward an output. This
activation function will be in every neuron, in every hidden layer of
the neural network.
The decision function will approximate the label
						hxi;θ,b≈yi
					 for every data point
						i=1,...,n
					. The idea is to use all the past data to learn the values
						θ
					,
						b
					 and to approximate the values of
						y
					 (supervised learning). We may try to minimize the sum of square errors (learning rule) as our objective function or loss function as follows:

					
H(θ,b)=∑i=1n‍(h(x(i);θ,b)-y(i))2
(5)

				
The crucial step is to minimize the error function
						(hxi;θ,b−yi)2
					. The main task will be to obtain the parameters
						θ
					 and
						b
					 in such way that the error is minimized. One optimization
technique is to use iteration in order to approach to the optimum values
 of
						θ
					 and
						b
					. One optimization method is called the stochastic gradient descent algorithm:

					
θ1=θ1+αΔθ1
(6)

				

					
θ2=θ2+αΔθ2
(7)

				

					
b=b+αΔb
(8)

				
Where the
						Δθi
					 and
						Δb
					 are the gradients of the parameters. The important in this method is to find the gradients in
						Δθi
					 and
						Δb
					 in order to iterate until convergence. The term stochastic
comes from the idea of initializing the algorithm using random weights,
usually between zero and one. The idea to start with random weights
during iteration in order to avoid local minima. Another problem in this
 method is the learning rate determination of the network
						α
					. If
						α
					 is too small the algorithm is very slow and if too large
can bring about large fluctuation. Additional analysis is needed to find

						α
					, for example using Cross-Validation analysis or optimization.
By computing partial derivatives of the error function with respect to the parameters, the gradients become:

					
Δθ1=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)x1i
(9)

				

					
Δθ2=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)x2i
(10)

				

					
Δb=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)
(11)

				
The stochastic gradient descent algorithm allows to learn the decision function
						hx;θ,b
					 computing the above gradients by iteration. First we must set a random value for
						θ
					 and
						b
					 and use the initial values
						xi
					 and
						yi
					 to compute the derivatives 9, 10 and 11. Once the parameters
						θ1
					,
						θ2
					 and
						b
					 have been computed, we use these values in 6, 7 and 8 and then go back to the input values
						xi
					 and
						yi
					 again. This iteration continues until convergence, when the decision function
						hx*;θ*,b*
					 is obtained and used for prediction. To predict
						y
					 we use the parameters
						θ*
					 multiplied by
						x
					 plus the term
						b*
					 after been put through the sigmoid function. In this simple network the inputs represent the first layer
						l
					 and then a single neuron (perceptron) in the next layer
						l+1
					 where the activation function processes the information and pass it over to the final output which is in the final layer
						L
					.
The gradient descent algorithm is a
key feature of an ANN. Although more sophisticated algorithms are being
developed, still gradient descent algorithm is still the core method in
ANN. There is also the disadvantage of vanishing gradient when weights
are too small and make the gradient to go to zero. Perhaps the vanishing
 gradient problems was the main disadvantage of the ANN and also the
main motivation to develop more sophisticated networks.
Another
 idea is to separate the data into smaller problems and to solve for
each problem separately. For example, in our binary classification
problem, some data with a label equal to zero will be a single cluster
between two separated clusters of data labelled one. Now we will need
two decision functions with more parameters and we need to construct a
neural network with two neurons. The idea is to make a decision function
 of decision functions so that to predict the label
						hh1x,h2x;ω,c≈y
					. We can use the previous gradient descent method as before, but now we have a more complex structure.
What we are building now is a neural network where the hidden layer that store the activation function
						gz
					 has two neurons. Both inputs now go through the whole network and the parameters
						ω
					 and
						θ
					 are now the weights for the decision functions while the biases are now
						b
					 and
						c
					. The new decision function is:

					
h(x)=g(ω1h1(x)+ω2h2(x)+c)=g(ω1g(θ1x1+θ2x2+b1)+ω2g(θ3x1+θ4x2+b2)+c)
(12)

				
In the above decision function all parameters
 and biases must be found at the same time using gradient descent. We
are iterating forward, which means that iteration to update parameters
must go back to each input data point in the training sample
						xi,yi
					 in layer
						l
					 until convergence is accomplished. This iteration process is called feedforward Neural Networks.

2.2 Backpropagation algorithm

 Another way to learn is to use the backpropagation algorithm
 (BP). But before we may consider the possibility of more complex ANN
architectures. We may consider adding more neurons but also additional
hidden layers to our Neural Networks, on what is commonly known as
Multilayer Perceptron Network. BP requires that once the feedforward process has been completed and we have arrived to the output layer
						L
					, then we go back on the entire network to perform a backward pass for all layers
						l=L−1,L−2,...,2
					. In order to perform a backward pass we must redefine our variable
						z
					 and the decision function. The function
						z
					 is now:

					
z(l)=θ(l)Th(l-1)+b(l)
(13)

				
And the decision function becomes:

					
h(l)=g(z(l))=g(θ(l)Th(l-1)+b(l))
(14)

				
The first decision function is just the layer of inputs
						h1=x
					, which are used to update the next decision function
						h2=gθ1Th1+b1
					 and so forth until we get the output
						hx=hL=gθL−1ThL−1+bL−1
					 which is a scalar vector. Because we are now using multiple neurons, we can understand
						hl
					 as a vector as well as the input vector
						x
					 and the parameters
						θ
					 and
						b
					. We must proceed in a similar way we obtained the gradients in 9, 10 and 11. First we must find the derivative of the function
						gz
					 respect to the parameters
						θ
					 and
						b
					. For the vector of weights:

					
∂g(z(l))∂θ(l)=∂g(z(l))∂z(l)∂z(l)∂θ(l)
(15)

				
And for the bias:

					
∂g(z(l))∂b(l)=∂g(z(l))∂z(l)∂z(l)∂b(l)
(16)

				
The second part of the above derivatives,
						∂zl/∂θl
					 and
						∂zl/∂bl
					 comes from 13:

					
∂z(l)∂θ(l)=h(l-1)
(17)

				

					
∂z(l)∂b(l)=I
(18)

				
To find the first part of the above derivatives 15 and 16, we define
						δl=∂gzl/∂zl
					. Because
						zl+1=θl+1Thl+bl+1
					, then:

					
∂z(l+1)∂h(l)=θ(l+1)T
(19)

				
and since
						hl=gzl
					, then:

					
∂h(l)∂z(l)=∂g(z(l))∂z(l)=g'(z(l))
(20)

				
Now we can obtain the derivative
						δl
					:

					
δ(l)=∂h(l)∂z(l)∂z(l+1)∂h(l)∂g(z(l))∂z(l+1)=θ(l+1)Tδ(l+1)⊙g'(z(l))
(21)

				
Where the
						⊙
					 is for the Hadamard product. Now we can find the updates for the gradient descent and perform the backpropagation:

					
Δθ(l)=∂g(z(l))∂θ(l)=δ(l)h(l-1)T
(22)

				

					
Δb(l)=∂g(z(l))∂b(l)=δ(l)
(23)

				

2.3 Resilient Backpropagation Neural Networks (RBP)

 The backpropagation algorithm allows the network to learn and get the parameters
						θ
					 and
						b
					 in a more refined way. The main drawback of both
feedforward and backpropagation is that, some gradients may become zeros
 and then some neurons may deactivate themselves. In rare cases the data
 and initial values produce the deactivation of neurons weakening the
network and decreasing the predictive power, what is know as vanishing gradient problem. This is the main motivation to develop more complex architectures called Deep Neural Networks or DNN.
Another algorithm commonly used in ANN is the heuristic Resilient Backpropagation
 algorithm (RBP). This algorithm is a slightly different version of the
Backpropagation but instead of using the magnitude of the gradients
						Δθ1
					,
						Δθ2
					 and
						Δb
					 we use their sign. The purpose of this modification, first proposed by Riedmiller and Braun [14] in 1993 and applied by Anastasiadis et al. [2]
 in 2005, was to adapt the learning rate over the entire neural network.
 The RBP converges faster than the common BP algorithm but keeps its
more general attributes. Gunther and Fritsch [5] produced an efficient algorithm to estimate the RBP with weight backtraking.
With the Backpropagation algorithm we have seen that the weights are updated following the general form:

					
θij(l+1)=θijl+αΔθij(l)

				
Where
						θijl
					 means the weight from neuron
						j
					 to neuron
						i
					 in layer
						l
					. In the previous section we found that the updated amount
						Δθijl
					 was
						Δθl=δlhl−1
					 (we removed the transpose upper letter T to facilitate explanation). We know that this is also:

					
Δθij(l)=∂z(l)∂θij(l)δ(l)

				
The RBP algorithm proposes that the update is performed with the sign of the derivative rather than the size of it as follows:

					
Δθij(l)=-sign∂z(l)∂θij(l)δij(l)
(24)

				
Another importance change is that the update parameter
						δl
					 is changed to
						δijl
					 in the following form:

					
δij(l)=min(η+⋅δij(l-1),δmax) ,if ∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) >0max(η-⋅δij(l-1),δmin) ,if ∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) <0δij(l)otherwise

				
Where
						0<η−<1<η+
					 are pre-set values. The value of
						δijl
					 is updated in every step according with the change of sign of the derivative in 24 and the above definition. When the sign changes this means that a minimum has been missed so the network applies the either
						η−⋅δijl−1
					 or
						δmin
					 which ever larger. The reader may notice that this process
also eliminates the need of determining exogenously the learning rate
						α
					 as in the traditional backpropagation algorithm, because the parameter
						η
					 is a close adaptative substitute.
The
 methods of weight backtraking is also based on heuristics, and the idea
 is to keep using previous weights for updating (some weights only). For
 example, if:

					
∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) ≥0, then Δθij(l)=-sign∂z(l)∂θij(l)δij(l)

				
But if less than zero, we use the previous update:

					
∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) <0, then Δθij(l)=Δθij(l-1)

				
This implementation trick avoid the updating of the learning rate then avoiding using the otherwise
 option above. The advantages of using RBP algorithm is that reduces
computation with the advantage of similar, if not better, precision. It
is very useful when the data contains noise, which means that it
preforms well when applied to financial time series data sets. In the
next section we will present some results using RBP neural networks.

3 Time Series Forecasting

3.1 The data

The
 first task in this work is to forecast a time series using binary
classification with ANN methods. A basic classification would be to
describe the behaviour of a stock or stock index in order to predict its
 movement. Predicting stock prices is important as we would want to
decide if we need to buy or sell a stock or predict the ups and downs of
 a price index. In this case we would want to define a label
						y
					 with binary values
						0,1
					 with zero for a drop in the stock prices compared to a day
before, and one for an increase in the stock prices. We can use for
example, the closing prices of stocks or stock indexes to construct this
 label. This is a practical way to observe movements in the stock
prices, as we need to know if prices will go up or down for very
practical decision making. For example, we may decide to sell if a stock
 price is likely to go down or buy when price is likely to go up.
Broadly speaking, trading in the stock market is based in these simple
decisions, and usually a good trader uses, among other tools, technical
analysis to decide whether is time to sell or buy stock. Although we are
 not applying this binary classification problem to any specific stock,
the underlying principle of classification remains the same.
The
 next question is defining the features that will be used to predict the
 movements in stock prices. In other words, we need the matrix of
features x that will help to define the label y. We decided to use some technical analysis concepts as in Kim [11], most of them taken from Achelis [1]. Technical analysis indicators will be our features matrix x. An experienced trader may read the concepts in table 1
 and along with additional information then try to predict changes in
stock prices. These features are mostly ratios of prices, moving
averages or both.

					
Table 1.
			
Selected features and formulas

	 Stochastic % K 	
										
											CPt−LLt−nHHt−n×100
										

									
	Stochastic % D (Stochastic moving average of K)	
										
											∑i=0n-1‍%Kt-in
										

									
	Slow %D (Moving average of %D) 	
										
											∑i=0n-1‍%Dt-in
										

									
	Momentum 	
										
											CPt-CPt-4
										

									
	Rate of Change (ROC) 	
										
											CPtCPt-n×100
										

									
	Williams’ %R 	
										
											Hn-CPtHn-Ln×100
										

									
	A/D Accumulation/Distribution Oscillator 	
										
											Ht-CPt-1Ht-Lt
										

									
	Disparity5 	
										
											CtMA5×100
										

									
	Price Oscillator (OSCP) 	
										
											MA5-MA10MA5
										

									
	Commodity Channel Index 	
										
											Mt-SMt0.015Dt
										 , where:
	 	
										
											Mt=(Ht+Lt+Ct)/3
										

									
	 	
										
											SMt=∑i=1n‍Mt-i+1n
										 ,
	 	
										
											Dt=∑i=1n‍|Mt-i+1-SMt|n
										

									
	Relative Strength Index 	
										
											100-1001+(∑i=0n-1‍UPt-i/n)/(∑i=0n-1‍DWt-i/n)
										

									

				

					Table 1 shows twelve well known
technical indicators for trading. These are constructed with simple
market data such as closing price (CP), lowest low price (LL), highest
high price (HH), high (H) and low (L) prices during the trading day or
period and it is very common to use Moving Averages (MA) for their
construction. The stochastic oscillators such as stochastic
						%K
					 and
						%D
					 are used by traders to know if an stock is overbought or
oversold. The Momentum is used to see any change on the price trend
while the Rate of Change (ROC) measures the speed of the ascent/descent
of every new trend. The Williams’ Accumulation/Distribution indicator
measures the market pressure, which advices to sell when Williams’ A/D
is low and stock prices are high and buy when Williams’ A/D is high and
market prices are low. The Disparity5 is just an ratio of the closing
price with respect to the 5 days Moving Average and the OSCP or Price
Oscillator is the growth of the moving average. The Commodity Channel
Index (CCI) is used as a leading indicator to observe the strength of a
stock, whether a stock is overbought or oversold. The Relative Strength
Index (RSI) is used as a leading indicator to observe the historical
strength of a stock using the ups and downs in historical closing
prices. The WilliamsR is a momentum indicator that reflects how the
close price compare with the highest price.
All features in table 1
 are associated with the prices of the stocks and are used to interpret
the trends of stock market prices. The entire data set for a given stock
 market index will be the label y and the feature matrix x
 that describes the label. All technical analysis indicators will be
used to classify our label in both directions, ups and downs for the
entire stock market index. There are dozens more technical analysis
indicators that can be used, but we are trying to use some the most
popular and also applied in other similar research.
This
 section contains an empirical analysis using RBP algorithm in order to
predict time series, particularly changes in stock price indexes. We
chose to predict changes in six major European, Asian and North American
 stock market indexes. We used six stock indexes: The European STOXX50
that contains blue chip stock from the 50 best performing companies in
leading sectors in Europe; the DAX which is also an index that contains
30 blue chip German companies; the Nikkei stock exchange index, the Hang
 Seng index which is the stock exchange index from Hong Kong, the
Canadian Toronto Stock Exchange index and the Mexican Stock Exchange
index IPC.
We decided to use daily data for each
stock exchange from January 2000 to June 2019, less than five thousands
daily observation in each market. Compared with the same data from
1980’s and 1990’s, the period of analysis is high frequency data and
contains sharp financial crashes, perhaps due to the new trading methods
 using electronic platforms and the availability of information online.
Financial markers are now more competitive as communication technology
has improved along with capital mobility. Table 5 in the appendix contains the summary statistics for the six markets on closing, high, low and open market prices.

3.2 Estimation

With the information on the average prices in each market, we first constructed our matrix of features
						x
					 that were used to describe the label y, where y
 are the changes in close price. The idea is to approach to the daily
changes in close prices in each stocks market. In this case, the
classification problem will be to assign a label of 1 if the close price
 index in time
						CPt
					 is higher than the previous day
						CPt−1
					, and 0 otherwise so that
						y→0,1
					. Our data points
						x
					 will be the features that help us to find the weights
						w
					 and the bias
						b
					.
Because ANN is a supervised machine learning method, we are going to demand to the network to find the best way to predict y using the twelve technical analysis features constructed using indicators in table 1 (matrix
						x
). This matrix will serve as the input data and the main objective of the ANN algorithm is to find patterns in
						x
					 so that to approach the vector y. Because the weights produced by the ANN are sensitive to the scale of each feature we must normalize the features matrix
						x
					 and transform them into a matrix with values in the range of
						0,1
					 to ensure large values do not overcome features with small values.
When the whole data set with y and
						x
					 have been constructed, the next step is to divide the data
set into a training and test sets. The training set will be used by each
 algorithm to learn and the second set for testing if predicted values
match with the data points. In our analysis, we used the first 70% data
points as training set and the remaining as test data set. In the
appendix the reader will find the summary statistics for each feature x and the label y by stock market.
The
 only thing left for clarification will be the estimation of the Hit
ratio for each prediction. After running each of the ANN models, we will
 get the predicted values using the test data into a new data set with
predicted values for the label y^.
 One way to evaluate the performance of the ANN predictions, is to
construct a hit ratio. Because the predicted values are real numbers and
 our test data set has a binary label, we must transform the predicted
values into binary outcomes. We set up a threshold of 0.5 which mean
that any predicted values higher than 0.5 will be set up to 1 (close
price was higher than in previous day) if not equal to zero (close price
 was lower than in previous day). The prediction results are matched in
the form:

					
Ri=1 if Predicted value=test data0 otherwise
(25)

				
The prediction performance is measured using a hit ratio, defined by:

					
HR=1m∑i=1m‍Ri
(26)

				
This hit ratio is the percentage of correct matches where
						y
					 = y^. This is a simple coefficient that can be used to compare performance (prediction) for each neural network model.
The
 main part of the empirical analysis requires to use ANN to predict time
 series. We trained different single layer networks using traditional
Backpropagation and Resilient Backpropagation Neural Network algorithm.
At first, single layer neural networks were constructed with 6, 12, 18
and 24 neurons each using standard logistic and error functions. Later
we trained multi-layer networks with 6 and 12 neurons in three hidden
layers. The results are shown in table 2.

					
Table 2.
			
Financial Forecasting using Artificial Neural Networks

	Backpropagation (learning rate=0.1)
	INDEX \ Neurons	6	12	18	24	6-6-6	12-12-12
	TSE (Canada)	0.4522	0.4522	0.4522	0.5478	0.4522	0.4522
	IPC (Mexico)	0.4905	0.5095	0.4905	0.5095	0.4905	0.4905
	Nikkei (Japan)	0.4600	0.5400	0.4600	0.5400	0.4600	0.4600
	Europe50	0.4763	0.4763	0.4763	0.5237	0.4763	0.4763
	Han Seng (Hong Kong)	0.4757	0.5243	0.4757	0.5243	0.4757	0.4757
	DAX (Germany)	0.4612	0.5388	0.4612	0.5388	0.4612	0.4612
	Resilient Backpropagation (weight bactracking)
	INDEX \ Neurons	6	12	18	24	6-6-6	12-12-12
	TSE (Canada)	0.5478	0.5959	0.6678	0.5458	0.5478	0.5478
	IPC (Mexico)	0.5095	0.5194	0.5095	0.5095	0.5095	0.5095
	Nikkei (Japan)	0.4892	0.4929	0.5743	0.4899	0.5131	0.5049
	Europe50	0.4564	0.4515	0.4522	0.4536	0.4557	0.4529
	Han Seng (Hong Kong)	0.5028	0.5125	0.4944	0.4993	0.5271	0.5049
	DAX (Germany)	0.5287	0.5273	0.5745	0.5300	0.5388	0.5179

				
One disadvantage of the ANN is the cost in
training increases when the architecture becomes more complex. As the
number of neurons and hidden layers increase, the longer the training
time is required. On the other hand, ANN with backpropagation may obtain
 better performance due to a more flexible updating. Table 2
 contains the hit ratios for different ANN models with different
architectures. The upper part contains the hit ratios using traditional
backpropagation with a learning rate of 0.1 while the lower part
contains the hit ratios using resilient backpropagation with weight
backtracking.
With the only exception being the
Europe50 index, we find larger hit ratios using resilient
backpropagation. This does not mean that we cannot achieve better
results in traditional backpropagation, but for that we need to find the
 best learning rate and architecture. And this will require additional
statistical analysis in order to decide the correct learning rate, as
each model is different.
On the other hand,
resilient backpropagation has a flexible and heuristic way to choose the
 learning rate and update the gradient for a better descent. The reader
may notice that there is little room for improvement in each model using
 backpropagation as we use a single learning rate for every model.
However, resilient backpropagation has room for improvement as the
learning is controlled during convergence. Estimation in table 2
 will vary as long as we choose different activation functions, learning
 rates and gradient methods for updating, but we decided to leave model
selection for future research.

4 Contribution measures

 This work focuses not only on financial forecasting using ANN but also
offers a descriptive analysis on the overall performance of the features
 used for prediction. This is an important issue because we need
information on the relative relevance of each feature in the learning
process. We know that each feature was normalized when constructing the
matrix x, so we may be able to apply some indicators on similar data and obtain some comparable results.

				
Table 3.
			
Correlation coefficients: Garson, Yoon and Trapezoid Contribution Measures

	Index	Garson\Yoon	Garson\Trapezoid	Yoon\Trapezoid
	DAX	0.625	0.816	0.808
	NIKKEI	0.789	0.851	0.931
	IPC	0.550	0.722	0.908
	HS	0.050	0.307	0.881
	EU50	0.619	0.621	0.512
	TSE	0.511	0.698	0.864

			
In order to find the relative importance of
each feature we must apply a measure using the weights from the ANN
analysis. The magnitude of each weight in every network tell us about
the relative importance of each feature. This section provides with some
 measures on the relative contribution of each feature on the final
output in a Neural Network. We estimated each contribution measure on
the best single hidden layer ANN neural network. For example, if the
input layer has
					i=1,2,...I
				 nodes, and the hidden layer has
					j=1,2,...,J
				 neurons, the final output weights will come from equal number of nodes
					k=1,2,...,J
				. At first, we introduce two different measures called Garson and Yoon measures, similar to Huang et al. [8]. The first contribution measure is the Garson measure:

				
GC=∑j=1J‍|wji||vjk|∑i=1I‍∑i=1I‍∑j=1J‍|wji||vjk|∑i=1I‍|wji|

			
And the second is the Yoon measure:

				
YC=∑j=1J‍wjivji∑i=1I‍|∑j=1J‍wjivji|

			
The Garson measure can be interpreted as
percentages of contribution on the final output. Yoon contribution index
 is more complicated to interpret, though we may interpret a high
absolute value of Yoon measure as high relevance. Both measures are
designed for a single layer Neural Network, then the best single layer
results for each model. The results of the estimation are shown in table 4
 for each market (the number in the parenthesis shows the number of
neurons in the hidden layer). For four markets the ROC seems to be the
feature with the highest contribution to the financial forecasting,
except for the Hang Sheng index and the Euro50 index. These were the
only two indexes where we used the best single layer hit ratio using
backpropagation.

				
Table 4.
			
Contribution Measures for each Feature by Stock Market

	Features	TSE (18n) 	Nikkei (18n) 	DAX (18n)
	 	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid
	A/D	1.67%	-0.019	2.8%	5.52%	-0.018	2.03%	5.58%	0.027	2.66%
	CCI	2.43%	-0.005	3.6%	6.55%	0.015	3.45%	6.56%	-0.006	3.27%
	Disp10	7.26%	-0.058	3.8%	8.21%	-0.017	4.12%	7.07%	-0.041	3.01%
	Disp5	9.92%	-0.027	3.7%	9.07%	0.013	4.35%	7.16%	-0.006	4.84%
	fastD	12.15%	-0.023	10.0%	8.38%	-0.093	10.67%	9.20%	-0.040	7.44%
	fastK	8.08%	0.010	3.8%	6.73%	0.085	4.93%	8.37%	-0.040	5.00%
	Moment	9.56%	0.035	4.9%	8.42%	0.005	4.66%	10.49%	-0.020	5.85%
	OSCP	9.65%	0.015	3.9%	9.19%	0.012	3.54%	8.44%	-0.009	4.05%
	ROC	15.73%	0.637	38.5%	13.84%	0.722	42.38%	13.42%	0.558	39.58%
	RSI	7.94%	0.010	5.4%	8.70%	-0.001	3.61%	8.82%	0.042	5.75%
	slowD	4.08%	-0.020	5.3%	6.49%	0.005	4.39%	6.04%	0.011	4.18%
	WilliamsR	11.53%	-0.143	14.3%	8.89%	0.015	11.87%	8.84%	-0.201	14.37%
	 	 	 	 	 	 	 	 	 	
	Features	IPC (12n) 	HSI (12n) 	EU50 (24n)
	 	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid
	A/D	3.35%	0.001	1.33%	7.54%	0.034	5.71%	7.87%	-0.076	6.38%
	CCI	6.84%	0.001	2.95%	8.24%	0.118	8.44%	9.88%	0.162	9.77%
	Disp10	7.49%	0.018	2.99%	7.98%	0.107	9.58%	7.86%	0.033	8.41%
	Disp5	7.13%	-0.003	2.86%	8.39%	0.124	9.48%	7.86%	0.087	8.05%
	fastD	10.21%	-0.021	8.45%	7.05%	0.003	7.17%	7.71%	-0.052	7.09%
	fastK	8.79%	-0.098	7.90%	9.59%	0.238	15.42%	9.22%	0.110	13.09%
	Moment	7.51%	-0.003	1.42%	7.31%	0.081	6.61%	7.07%	0.027	7.27%
	OSCP	10.09%	-0.022	3.23%	8.05%	0.056	7.65%	8.43%	0.078	8.23%
	ROC	13.29%	0.717	49.24%	8.37%	0.065	7.44%	9.10%	0.139	9.73%
	RSI	9.15%	0.003	2.27%	8.95%	0.130	9.35%	7.75%	0.099	7.36%
	slowD	6.41%	0.004	4.47%	6.21%	0.017	6.23%	8.43%	-0.046	8.37%
	WilliamsR	9.75%	-0.109	12.90%	12.33%	-0.028	6.91%	8.82%	0.090	6.25%

			

				
Table 5.
			
Standard Statistics by Stock Market

	High price
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,346.74	2,795.28	6,801.95	2,319.65	13,596.89	11,277.24	0.49	-0.78
	Nikkei	4,776	14,120.67	4,285.77	13,636.81	7,100.77	24,448.07	17,347.30	0.41	-0.98
	IPC	4,876	28,553.79	15,434.73	31,543.24	5,109.40	51,772.37	46,662.97	-0.24	-1.45
	Hang Seng	4,800	19,577.61	5,696.33	20,623.56	8,430.62	33,484.08	25,053.46	-0.06	-0.86
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,867.28	2,843.10	12,294.60	5,812.90	16,672.70	10,859.80	-0.31	-1.04
	Low Price
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,233.77	2,780.47	6,691.01	2,188.75	13,517.81	11,329.06	0.49	-0.77
	Nikkei	4,776	13,935.29	4,257.91	13,403.06	6,994.90	24,217.26	17,222.36	0.42	-0.96
	IPC	4,876	28,168.76	15,280.96	31,087.91	4,950.71	51,524.23	46,573.52	-0.23	-1.46
	Hang Seng	4,800	19,316.24	5,639.54	20,386.76	8,331.87	32,897.04	24,565.17	-0.06	-0.88
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,738.87	2,834.99	12,151.10	5,678.30	16,589.80	10,911.50	-0.29	-1.05
	Open Price
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,293.06	2,788.12	6,746.28	2,203.97	13,577.14	11,373.17	0.49	-0.77
	Nikkei	4,776	14,032.76	4,273.57	13,553.15	7,059.77	24,376.17	17,316.40	0.42	-0.97
	IPC	4,876	28,362.18	15,362.55	31,307.40	5,077.39	51,590.48	46,513.09	-0.23	-1.46
	Hang Seng	4,800	19,460.25	5,672.78	20,518.17	8,351.59	33,335.48	24,983.89	-0.06	-0.87
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,807.88	2,839.82	12,219.80	5,689.40	16,642.10	10,952.70	-0.30	-1.04
	Close Price
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,292.11	2,787.72	6,748.30	2,202.96	13,559.60	11,356.64	0.49	-0.77
	Nikkei	4,776	14,027.96	4,273.60	13,541.62	7,054.98	24,270.62	17,215.64	0.42	-0.97
	IPC	4,876	28,368.40	15,360.10	31,321.52	5,081.92	51,713.38	46,631.46	-0.23	-1.46
	Hang Seng	4,800	19,450.48	5,665.96	20,511.59	8,409.01	33,154.12	24,745.11	-0.06	-0.87
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,805.41	2,838.86	12,220.20	5,695.30	16,669.40	10,974.10	-0.30	-1.04

			

				
Table 6.
			
Summary Statistics Features

	TSE (Canada)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.54	0.50	1.00	0.00	1.00	1.00	-0.14	-1.98
	AD	13175.28	4966.81	12835.92	5126.09	21788.43	16662.33	0.22	-1.33
	CCI	19.59	109.43	37.32	-330.81	327.16	657.97	-0.43	-0.51
	FastK	58.82	30.98	64.24	0.00	100.00	100.00	-0.35	-1.19
	FastD	58.82	28.77	63.90	0.25	100.00	99.75	-0.34	-1.23
	SlowD	58.82	27.88	63.72	1.14	98.42	97.28	-0.34	-1.22
	Williams R	41.18	30.98	35.76	0.00	100.00	100.00	0.35	-1.19
	Disp10	100.07	1.71	100.26	85.94	108.36	22.42	-1.15	6.55
	Disp5	100.03	1.15	100.14	90.03	106.43	16.40	-0.82	6.09
	Moment	6.49	229.82	23.60	-1884.90	1225.50	3110.40	-0.83	4.29
	OSCP	0.00	0.01	0.00	-0.08	0.04	0.12	-1.23	6.44
	ROC	0.01	1.07	0.06	-9.79	9.37	19.16	-0.66	10.07
	RSI	53.14	12.05	53.83	12.78	84.00	71.23	-0.27	-0.31
	IPC (Mexico)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.53	0.50	1.00	0.00	1.00	1.00	-0.12	-1.99
	AD	28733.10	19597.32	31712.29	973.64	59315.71	58342.07	-0.13	-1.54
	CCI	20.33	110.74	42.03	-357.18	371.29	728.47	-0.38	-0.51
	FastK	57.88	30.91	63.36	0.00	100.00	100.00	-0.34	-1.19
	FastD	57.90	28.86	63.21	0.51	99.88	99.37	-0.34	-1.25
	SlowD	57.92	27.99	63.04	1.91	99.57	97.66	-0.34	-1.25
	Williams R	42.12	30.91	36.64	0.00	100.00	100.00	0.34	-1.19
	Disp10	100.18	2.20	100.29	84.56	112.72	28.17	-0.57	4.27
	Disp5	100.08	1.47	100.14	89.78	109.98	20.20	-0.33	4.76
	Moment	29.31	665.07	51.18	-4496.07	3554.29	8050.36	-0.39	3.65
	OSCP	0.00	0.01	0.00	-0.08	0.07	0.15	-0.72	4.45
	ROC	0.04	1.29	0.07	-8.27	10.44	18.71	0.00	5.38
	RSI	53.53	12.56	54.50	11.49	86.44	74.94	-0.20	-0.51
	Nikkei (Japan)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.51	0.50	1.00	0.00	1.00	1.00	-0.05	-2.00
	AD	-33210.80	4452.53	-34423.82	-40305.15	-20749.27	19555.87	0.66	-0.51
	CCI	8.83	109.64	19.54	-430.68	321.73	752.40	-0.24	-0.67
	FastK	55.24	32.47	58.55	0.00	100.00	100.00	-0.20	-1.37
	FastD	55.25	30.28	58.34	0.22	100.00	99.78	-0.19	-1.41
	SlowD	55.26	29.40	58.24	0.66	98.49	97.83	-0.18	-1.40
	Williams R	44.76	32.47	41.45	0.00	100.00	100.00	0.20	-1.37
	Disp10	100.03	2.40	100.21	79.79	113.32	33.53	-0.72	4.09
	Disp5	100.01	1.61	100.15	86.81	113.79	26.98	-0.65	5.95
	Moment	2.43	381.10	25.95	-2415.93	1671.34	4087.27	-0.59	2.75
	OSCP	0.00	0.01	0.00	-0.10	0.07	0.16	-0.76	3.69
	ROC	0.00	1.52	0.03	-12.11	13.23	25.35	-0.40	6.28
	RSI	51.83	12.18	51.70	13.54	92.94	79.41	0.10	-0.30

			

				
Table 7.
			
Summary Statistics Features (continue)

	Europe50	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.51	0.50	1.00	0.00	1.00	1.00	-0.03	-2.00
	AD	2140.52	717.30	2009.83	708.64	4363.09	3654.45	0.86	0.52
	CCI	8.84	108.23	23.32	-366.03	367.35	733.38	-0.31	-0.60
	FastK	55.99	36.96	61.44	0.00	100.00	100.00	-0.25	-1.44
	FastD	56.00	34.09	61.01	0.00	100.00	100.00	-0.24	-1.43
	SlowD	56.02	32.95	60.76	0.00	100.00	100.00	-0.23	-1.43
	Williams R	44.01	36.96	38.56	0.00	100.00	100.00	0.25	-1.44
	Disp10	99.98	2.23	100.23	84.30	110.57	26.27	-0.76	3.08
	Disp5	99.99	1.53	100.10	89.74	107.94	18.20	-0.44	2.97
	Moment	-1.23	85.01	5.83	-487.77	435.31	923.08	-0.46	2.49
	OSCP	0.00	0.01	0.00	-0.07	0.05	0.12	-0.75	2.97
	ROC	-0.01	1.46	0.02	-9.01	10.44	19.45	-0.06	4.71
	RSI	51.48	11.04	52.21	14.14	77.81	63.67	-0.22	-0.54
	Han Seng (HK)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.52	0.50	1.00	0.00	1.00	1.00	-0.06	-2.00
	AD	21143.14	6147.85	23233.24	8928.13	34672.11	25743.98	-0.41	-1.10
	CCI	10.54	109.03	19.31	-338.04	300.85	638.89	-0.17	-0.86
	FastK	54.97	32.60	58.64	0.00	100.00	100.00	-0.19	-1.42
	FastD	54.97	30.54	58.01	1.33	99.59	98.26	-0.17	-1.45
	SlowD	54.97	29.66	57.92	2.98	98.79	95.81	-0.17	-1.44
	Williams R	45.03	32.60	41.36	0.00	100.00	100.00	0.19	-1.42
	Disp10	100.06	2.39	100.23	76.16	110.29	34.13	-0.60	4.57
	Disp5	100.03	1.59	100.10	82.57	113.26	30.68	-0.47	7.04
	Moment	9.65	553.11	33.43	-4025.33	2952.83	6978.16	-0.35	3.34
	OSCP	0.00	0.01	0.00	-0.09	0.06	0.16	-0.54	3.23
	ROC	0.01	1.47	0.05	-13.58	13.41	26.99	-0.10	8.05
	RSI	52.11	12.58	52.33	15.05	89.41	74.36	-0.04	-0.51
	Dax (Germany)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.53	0.50	1.00	0.00	1.00	1.00	-0.12	-1.99
	AD	6225.18	4595.94	5056.53	-825.28	15989.25	16814.53	0.66	-0.79
	CCI	15.34	109.28	34.90	-303.85	346.90	650.75	-0.34	-0.69
	FastK	57.98	31.51	63.09	0.00	100.00	100.00	-0.31	-1.29
	FastD	57.98	29.34	62.85	0.45	99.65	99.21	-0.29	-1.33
	SlowD	57.98	28.45	62.83	2.20	99.40	97.20	-0.28	-1.32
	Williams R	42.02	31.51	36.91	0.00	100.00	100.00	0.31	-1.29
	Disp10	100.07	2.34	100.35	84.06	111.92	27.86	-0.79	3.52
	Disp5	100.03	1.57	100.15	90.31	108.14	17.82	-0.50	3.18
	Moment	4.40	187.76	16.42	-1267.49	807.60	2075.09	-0.49	2.14
	OSCP	0.00	0.01	0.00	-0.08	0.06	0.14	-0.87	3.57
	ROC	0.01	1.47	0.08	-8.87	10.80	19.67	-0.06	4.59
	RSI	52.78	11.90	53.36	11.24	84.64	73.40	-0.17	-0.41

			
 One of the problems of the above measures is consistency. Both measures are positively correlated but just. For example, table 3
 shows the correlation coefficient between the Garson Measure and the
Yoon Measure. Both measures are highly correlated when analysing the
Nikkei Index, but they are completely different in the Hang Seng index
with a correlation of just 0.05. Another drawback of the Garson and Yoon
 measures is that they become difficult to calculate in more complex
network architectures. Under such considerations, a different measure is
 needed to evaluate the contribution of each feature in a ANN model.
We
 decided to give a geometric interpretation to the weights in order to
establish their relevance. For example, in a one-hidden layer neural
network, we interpret the weights
					wji
				 and
					vjk
				 as the lengths of the opposite sides of a triangle.
Multiplying the network weights in this form we can interpret the entire
 measure as the area of several triangles that make up to a irregular
trapezoid:

				
TC=∑j=1J‍|wji||vjk|2

			
An appealing feature of this Trapezoid
Contribution measure is that can be applied to any number of hidden
layers and neurons in the network and is quite easy to calculate and
interpret if we make percentages with the whole area and its parts. Table 4
 show the relative importance of each feature from the ANN analysis
using Garson, Yoon and the Trapezoid measures. For Japan, Canada, Mexico
 and German indexes the ROC is the most influential feature to predict
the stock market index while the fastK is the most important in the Hong
 Kong and European50 indexes.
We may notice that
the new Trapezoid contribution measure is highly correlated with the
Yoon measure but also moderately correlated with the Garson measure.
Most importantly, it is easy to calculate and can be applied to more
complex network architectures.

5 Final Conclusions

 This work contains a financial forecasting using both traditional
backpropagation and Resilient Backpropagation Neural Networks and also
an analysis on the relative importance of features used for forecasting.
 We use standard single layer and multi-layer feed forward architectures
 to evaluate the performance of both algorithms, along with sigmoid
activation function and error-correction learning rule, which are common
 for time series forecasting. The use of the RBP algorithm provides a
practical solution to the determination of the learning rate and is
especially helpful for data sets with noise such as financial stock
indexes. The Resilient backpropagation with weight backtracking is a
very flexible algorithm that can adjust to changes in model complexity.
Some times it can find a better solution when the model specification
changes.
This work provides a simple contribution
 measure in order to evaluate the importance of features in financial
times series forecasting. The main reason comes from the lack of
consistency in two available indexes: the Garson and the Yoon
contribution measures. A simple measure using the concept of an area of a
 trapezoid captures de idea of contribution to the prediction using the
ANN weights. This Trapezoid contribution measure uses the ANN weights
from the best model (highest hit ratio from a single layer ANN) to
calculate an area of an irregular trapezoid for every feature variable.
Although this concept is simple it reflects the magnitude and influence
of each weight in the network and can be interpreted as contribution to
the forecasting.
We used the trapezoid
contribution measure along with the Garson and the Yoon measures to
analyse the relevance of each feature in the best ANN model for each of
the six stock exchange indexes. We concluded that the ROC is perhaps a
very relevant feature at least for four of the stock exchange indexes
used: IPC, TSE, DAX and Nikkei. The European50 index and the Hang Seng
index seem to respond more to the FastK indicator despite the Garson and
 Yoon contribution measures are not consistently showing this. In this
respect, the trapezoid contribution measure offers additional relevant
information that can be used to evaluate the contribution of each
feature in the network.

Acknowledgements
I
 am very grateful to Prof. Hyejin Ku from York University for her
academic advice. The author is the sole responsible for any errors.

References
[1] Achelis, S. B. (2001). Technical Analysis from A to Z. McGraw Hill New York.

[2]
 Anastasiadis, A. D., Magoulas, G. D., and Vrahatis, M. N. (2005). New
globally convergent training scheme based on the resilient propagation
algorithm. Neurocomputing, 64:253-270.

[3] Cao, L.-J. and Tay, F. E. H. (2003). Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on neural networks, 14(6):1506-1518.

[4]
 Fukushima, K. and Miyake, S. (1982). Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267-285. Springer.

[5] Günther, F. and Fritsch, S. (2010). neuralnet: Training of neural networks. The R journal, 2(1):30-38.

[6] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554-2558.

[7] Huang, W., Nakamori, Y., and Wang, S.-Y. (2005). Forecasting stock market movement direction with support vector machine. Computers and Operations Research, 32(10):2513-2522.

[8]
 Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., and Wu, S. (2004). Credit
 rating analysis with support vector machines and neural networks: a
market comparative study. Decision support systems, 37(4):543-558.

[9] Igel, C. and Hüsken, M. (2003). Empirical evaluation of the improved rprop learning algorithms. Neurocomputing , 50:105-123.

[10]
 Kara, Y., Boyacioglu, M. A., and Baykan, O. K. (2011). Predicting
direction of stock price index movement using artificial neural networks
 and support vector machines: The sample of the istanbul stock exchange.
 Expert systems with Applications, 38(5):5311-5319.

[11] Kim, K.-j. (2003). Financial time series forecasting using support vector machines. Neurocomputing , 55(1-2):307-319.

[12] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133.

[13] Riedmiller, M. and Braun, H. (1992). Rprop-a fast adaptive learning algorithm. In Proc. of ISCIS VII), Universitat. Citeseer.

[14] Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The rprop algorithm. In Neural Networks, 1993., IEEE International Conference on, pages 586-591. IEEE.

[15] Rosenblatt, F. (1962). Principles of neurodynamics.

[16] Sapankevych, N. I. and Sankar, R. (2009). Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2).

[17] Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560.

NOTES
[1] No declared funding source for research development

Received: 15/02/2019
Accepted: 09/08/2019

This is an open-access article distributed under the terms of the Creative Commons Attribution License

nav.xhtml

 		Financial time series forecasting using Artificial Neural Networks

 		Predicción financiera de series de tiempo utilizando Redes Neuronales Artificiales

 		1 Introduction

 		
 2 Artificial Neural Networks

 		2.1 The theory

 		2.2 Backpropagation algorithm

 		2.3 Resilient Backpropagation Neural Networks (RBP)

 		
 3 Time Series Forecasting

 		3.1 The data

 		3.2 Estimation

 		4 Contribution measures

 		5 Final Conclusions

 		Acknowledgements

 		References

 		NOTES

