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Abstract

This
 paper contains a financial forecast using Artificial Neural Networks. 
The analysis uses the traditional Backpropagation algorithm, followed by
 Resilient Backpropagation, to estimate the network weights. The use of 
Resilient Backpropagation Neural Networks solves the learning rate 
determination problem. Both algorithms are consistent and offer similar 
predictions. Six major Stock Exchange Market indices from Asia, Europe, 
and North America were analyzed to obtain hit ratios that could then be 
compared among markets. A dependent variable was constructed using daily
 close prices, which was then used for supervised learning and in a 
matrix of characteristic variables constructed using technical analysis 
indicators. The time series dataset ranges from January 2000 to June 
2019, a period of large fluctuations due to improvements in information 
technology and high capital mobility. Instead of prediction itself, the 
scientific objective was to evaluate the relative importance of 
characteristic variables that allow prediction. Two contribution 
measures found in the literature were used to evaluate the relevance of 
each variable for all six financial markets analyzed. Finding that these
 measures are not always consistent, a simple contribution measure was 
constructed, giving each weight a geometric interpretation. Evidence is 
provided that the Rate-of-Change (ROC) is the most useful prediction 
tool for four aggregate indices, the exceptions being the Hang Seng and 
EU50 indices, where fastK is the most prominent tool. 

JEL Classification: 
				
G11; G15; G17.
Keywords: 
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Resumen

Este
 documento contiene una predicción financiera utilizando Redes 
Neuronales Artificiales. Hacemos nuestro análisis utilizando el 
algoritmo de Backpropagation tradicional y luego Backpropagation 
Resiliente para estimar los pesos en las redes. El uso del algoritmo de 
Bacpropagation Resiliente permite resolver el problema de la 
determinación de la tasa de aprendizaje. Ambos algoritmos son bastante 
consistentes y arrojan predicciones similares. Analizamos seis índices 
principales de los mercados bursátiles de Europa, Asia y América del 
Norte para generar índices de aciertos que puedan compararse entre 
mercados. Usamos precios de cierre diarios para construir una variable 
de dependiente para dirigir el aprendizaje (aprendizaje supervisado) y 
una matriz de variables de características construidas utilizando 
indicadores de análisis técnico. El rango de datos de la serie de tiempo
 va desde Enero de 2000 a Junio de 2019, un periodo de grandes 
fluctuaciones debido a mejoras en la tecnología de la información y una 
alta movilidad de capital. En lugar de la predicción en sí misma, el 
objetivo científico es evaluar la importancia relativa de las variables 
independientes que permiten la predicción. Utilizamos dos medidas de 
contribución utilizadas en la literatura para evaluar la relevancia de 
cada variable para los seis mercados financieros analizados. Descubrimos
 que estas medidas no siempre son consistentes, por lo que construimos 
una medida de contribución simple que le da a cada peso una 
interpretación geométrica. Proporcionamos algunas pruebas de que la tasa
 de cambio (ROC) es la herramienta de predicción más útil para cuatro 
índices generales, con las excepciones siendo el índice Hang Sheng y 
EU50, en donde el fastK es el más destacado. 

Clasificación JEL: 			
				
G11; G15; G17.
Palabras clave: 			
				
Pronóstico Financiero; Aprendizaje Automático; Redes Neuronales.



1 Introduction




 This work is about Artificial Neural Networks (ANN) and their 
applications to financial time series forecasting. We use two types of 
algorithms, backpropagation (BP) and resilient backpropagation (RBP), to
 produce the weights needed for prediction. The final scientific 
objective is to use the network weights to estimate some measures of 
relative importance. One of the main difficulties when using 
non-parametric methods such as ANN is the interpretation and meaning of 
the weights (parameters) obtained. Though interpretation is difficult 
due to the nature and purpose of machine learning methods, we intend to 
offer some conclusions on the importance of the variables used for 
prediction. In this respect, ANN analysis is the method for obtaining 
information about which variables are more relevant for forecasting.
The
 most common architecture for prediction in times series is the single 
layer or the multi-layer perceptron feed-forward networks. When deciding
 on the activation function it is common to decide on a sigmoid type, 
which is the standard when the prediction is on the range between zero 
and one. The simplest and most common learning rule for forecasting is 
the error-correction type. But perhaps one important parameter needed to feed our analysis is the learning rate which decides on how well the updates in the network performs.
When
 using the traditional Backpropagation algorithm we must do some 
previous work in order to choose the learning rate that best fits our 
model. But this could be a time consuming process and there is not 
always assurance that the network will work well. One way to go around 
this problem is to use a different algorithm that may endogenously 
determine this learning rate. We decided to use the Resilient 
Backpropagation (RBP) algorithm which offers a simple and heuristic 
method to find the network weights without first determining the 
learning rate.
The RBP algorithm is an improvement on traditional Neural Networks using backpropagation algorithm, first proposed by Riedmiller and Braun [14]
 in 1993. Riedmiller developed a flexible algorithm to tackle the main 
problems in the traditional Backpropagation, in especial the vanishing 
gradient problem and the need for cross-validation analysis for 
estimating the learning rate. The new algorithm allowed for weights 
backtraking and a heuristic adjustable learning rate that improved 
prediction.
The Artificial Neural Networks history began perhaps since 1940’s when McCulloch and Pitts [12]
 first proposed the idea of simulating neuronal activity using 
mathematical logic. But it was until early 1960’s that the idea that 
machines can learn was first explored by Rosenblatt [15]
 with the creation of the Perceptron Algorithm. For the first time the 
possibilities of Artificial Intelligence were recognized when this 
algorithm was tested on an IBM 704 computer. Although there were great 
expectation about artificial intelligence at that time, the computer 
technology was not well advanced at that time to make Artificial Neural 
Networks to work in their full potential. A big lap forward in ANN 
research was PJ Werbos’s 1974 unpublished PhD Dissertation "Beyond 
regression: new tools for prediction and analysis in the behavioural 
sciences", where he first proposed backpropagation to train Neural 
Networks. A detailed explanation on Backpropagation can be found also in
 Werbos [17]. Backpropagation algorithm was
 indeed a break-trough that allowed the effective use of gradient 
descent method in the training of ANN.
The development of the Neocognitron by Fukushima and Miyake [4]
 inspired the creation of Convolutional Neural Networks (CNN) which are 
indeed Deep Neural Networks (DNN) with multi layers but where some 
hidden layers are called convolutional layers as they perform a 
convolution that connects to the next hidden layers of neurons. This 
type of neural networks are often used in pattern recognition problems. 
In 1982 John Hopfield, with his paper Hopfield [6],
 invented the Hopfield Network with the purpose of modelling human 
memory. This later was known as Recurrent Neural Network, in which time 
lapses between hidden layers and neurons were important to model human 
learning process and memory. Several other types of DNN with different 
variations and architectures have been created in recent years. Deep 
learning is currently a field very dynamic with great possibilities.
On the side of financial time series analysis, Sapankevych and Sankar [16] made a survey on the SVM (Support Vector Machines) and focused on times series prediction using SVM. Kim [11]
 is an analysis on financial time series using SVM on the Korean 
composite stock exchange market and and compares the SVM results with 
Artificial Neural Network (ANN) models and finds that the SVM 
outperforms slightly those of ANN models. Huang et al. [7] predicted the Japanese Stock Exchange index using SVM and concluded that SVM has a better hit ratio than neural networks. Kara et al. [10]
 is a similar analysis on the Istanbul stock index using ANN and SVM. 
Contrary to the previous works on financial time series, this work 
concluded that the Neural Networks performed better than SVM with a 
higher hit ratio. Cao and Tay [3] is an 
analysis using Futures contract in the Chicago Mercantile Market using 
SVM, backpropagation NN and Regularized Radial Basis function NN. Their 
results also show that SVM outperforms backpropagation NN and has 
similar performance against Radial Basis function NN.
This
 work shows the basic formulation of Artificial Neural Networks and 
their practical application to time series. We introduce financial 
forecasting using the Resilient Backpropagation Algorithm (RBP), which 
was proposed by Martin Riedmiller und Heinrich Braun in Riedmiller and Braun [13] in 1992. They published their work the next year in Riedmiller and Braun [14]. This algorithm tries to solve the problem of the learning rate especially in noisy data. Igel and Husken [9] is also a work in RBP which explains the weight backtracking technique.
As
 mentioned before, the final scientific objective is to measure which 
features are important for prediction in whole financial markets. Huang et al. [8]
 is a paper that includes different measures for assessing the relative 
importance of each feature in the neural network prediction. The two 
importance measures found in the literature are the Garson and Yoon 
contribution measures but we noticed that both are not highly 
correlated. The interpretation and comparison between both measures is 
not straight forward and, in average, the correlation between them is 
about 0.54 in our analysis. Our hypothesis is that these contribution 
measures are not well suited to describe the relative importance of each
 feature. We decided to construct a simple measure in order to describe 
the importance of each feature variable in the best ANN model obtained.
Given
 the above scientific objective, we do not focus in model selection 
techniques. Although prediction depends on the network architecture and 
other technical choices such as the learning rule or the activation 
function, the main purpose is to observe which features are better for 
prediction. This is information is already embedded in the data and its 
complexity. Although the determination of the best model is important for prediction (e.g. evolutionary algorithms) we decided to focus on this subject in future research.
In
 this work we are going to work with ANN for binary classification with 
the objective of predicting ups and downs in the stock exchange indexes.
 In the first part of this work we introduce Neural Networks and the 
Resilient Backpropagation Algorithm. In the second part, we use data 
from six stock exchange markets (Hong Kong, Japan, Germany, Europe50, 
Canada and Mexico indexes) in order to obtain prediction on the ups and 
downs on the stock indexes. The final part of this work includes an 
analysis on the relative importance of the feature variables using 
different contribution measures.

2 Artificial Neural Networks



2.1 The theory




 Artificial Neural Networks using the Backpropagation algorithm is a 
traditional method for classification and forecasting. Though several 
versions of Deep Neural Networks (DNN) are now popular powerful tools 
for analysis, still the backbone behind all architectures of Neural 
Networks continue to be the gradient descent method used in Feedforward 
and Backpropagation algorithms. Both ANN and DNN have a wide range of 
important commercial applications. There have been numerous efforts to 
design artificial neural networks based on Von Neumann’s architecture, 
trying to produce intelligent programs that mimic biological neural 
network. Neurons are very special cells in the human brain, 
interconnected with each other and responding to stimuli using chemical 
and electric reactions with connections called synapses. The idea of ANN
 is to simulate neurons stimuli process and let this neurons to learn by
 themselves.
ANN can perform complex 
classification problems. For a simple binary classification, the idea is
 to construct a decision function 
						hx
					 to approximate the outcome or label 
						y
					 (which is binary, either zero or one). The decision can be 
interpreted as a simple weighted function, a linear combination of, 
let’s say, two features 
						x1
					 and 
						x2
					:

					
h(x;θ,b)=θ1x1+θ2x2+b  
(1)



				
Which can also be written in the form:

					
y=h(x;θ,b)=θTx+b  
(2)



				
The main objective is to find the vector of weights 
						θ
					 and the parameter 
						b
					 (bias) that may be used to describe and predict the outcome 
						y
					. A Neural process is a biological process that describes 
how a neural cell learns. A neural cell processes information from 
stimuli it receives and then uses a series of synapses to pass on new 
information already processed. An ANN tries to reproduce the same 
process, using inputs nodes to receive information, one hidden layer to 
process the information using an activation function, and then output 
nodes where the processed information is received. Given an output 
						y
					 we must train our network to learn and obtain these output values. At the end, the weights 
						θ
					 will be obtained and will be used for prediction.
The
 process of training a ANN will depend on the activation function we 
want to use as well as the method to find the appropriate weights 
recursively. Usually, we may initiate to train the ANN with random input
 values and then apply weights to every data point that will pass on 
information to a hidden layer where the information will be processed by
 an activation function. Weights 
						θT
					 are recalculated iteratively until convergence is achieved. It is desirable that the values we get from the decision function 
						hx;θ,b
					 being in a small range, for example, between 0 and 1. One way to achieve this is to map the decision function 
						hx;θ,b
					 into a new function what will give an output between 0 and 1:

					
h(x;θ,b)=g(θTx+b)  
(3)



				
To represent 
						g
					 as a new function of 
						zx=θTx+b
					, we may start to use a sigmoid function of the type 
(although there are other types of functions that may be useful to 
represent 
						g
					):

					
g(z)=11+e-z  
(4)



				
This is akin to a logistic regression function with 
						gz∈0,1
					. We call this activation function because this 
function will process the information and put forward an output. This 
activation function will be in every neuron, in every hidden layer of 
the neural network.
The decision function will approximate the label 
						hxi;θ,b≈yi
					 for every data point 
						i=1,...,n
					. The idea is to use all the past data to learn the values 
						θ
					, 
						b
					 and to approximate the values of 
						y
					 (supervised learning). We may try to minimize the sum of square errors (learning rule) as our objective function or loss function as follows:

					
H(θ,b)=∑i=1n‍(h(x(i);θ,b)-y(i))2  
(5)



				
The crucial step is to minimize the error function 
						(hxi;θ,b−yi)2
					. The main task will be to obtain the parameters 
						θ
					 and 
						b
					 in such way that the error is minimized. One optimization 
technique is to use iteration in order to approach to the optimum values
 of 
						θ
					 and 
						b
					. One optimization method is called the stochastic gradient descent algorithm:

					
θ1=θ1+αΔθ1  
(6)



				

					
θ2=θ2+αΔθ2  
(7)



				

					
b=b+αΔb  
(8)



				
Where the 
						Δθi
					 and 
						Δb
					 are the gradients of the parameters. The important in this method is to find the gradients in 
						Δθi
					 and 
						Δb
					 in order to iterate until convergence. The term stochastic 
comes from the idea of initializing the algorithm using random weights, 
usually between zero and one. The idea to start with random weights 
during iteration in order to avoid local minima. Another problem in this
 method is the learning rate determination of the network 
						α
					. If 
						α
					 is too small the algorithm is very slow and if too large 
can bring about large fluctuation. Additional analysis is needed to find
 
						α
					, for example using Cross-Validation analysis or optimization.
By computing partial derivatives of the error function with respect to the parameters, the gradients become:

					
Δθ1=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)x1i  
(9)



				

					
Δθ2=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)x2i  
(10) 



				

					
Δb=2g(θTx+b)-yi1-g(θTx+b)g(θTx+b)  
(11)



				
The stochastic gradient descent algorithm allows to learn the decision function 
						hx;θ,b
					 computing the above gradients by iteration. First we must set a random value for 
						θ
					 and 
						b
					 and use the initial values 
						xi
					 and 
						yi
					 to compute the derivatives 9, 10 and 11. Once the parameters 
						θ1
					, 
						θ2
					 and 
						b
					 have been computed, we use these values in 6, 7 and 8 and then go back to the input values 
						xi
					 and 
						yi
					 again. This iteration continues until convergence, when the decision function 
						hx*;θ*,b*
					 is obtained and used for prediction. To predict 
						y
					 we use the parameters 
						θ*
					 multiplied by 
						x
					 plus the term 
						b*
					 after been put through the sigmoid function. In this simple network the inputs represent the first layer 
						l
					 and then a single neuron (perceptron) in the next layer 
						l+1
					 where the activation function processes the information and pass it over to the final output which is in the final layer 
						L
					.
The gradient descent algorithm is a 
key feature of an ANN. Although more sophisticated algorithms are being 
developed, still gradient descent algorithm is still the core method in 
ANN. There is also the disadvantage of vanishing gradient when weights 
are too small and make the gradient to go to zero. Perhaps the vanishing
 gradient problems was the main disadvantage of the ANN and also the 
main motivation to develop more sophisticated networks.
Another
 idea is to separate the data into smaller problems and to solve for 
each problem separately. For example, in our binary classification 
problem, some data with a label equal to zero will be a single cluster 
between two separated clusters of data labelled one. Now we will need 
two decision functions with more parameters and we need to construct a 
neural network with two neurons. The idea is to make a decision function
 of decision functions so that to predict the label 
						hh1x,h2x;ω,c≈y
					. We can use the previous gradient descent method as before, but now we have a more complex structure.
What we are building now is a neural network where the hidden layer that store the activation function 
						gz
					 has two neurons. Both inputs now go through the whole network and the parameters 
						ω
					 and 
						θ
					 are now the weights for the decision functions while the biases are now 
						b
					 and 
						c
					. The new decision function is:

					
h(x)=g(ω1h1(x)+ω2h2(x)+c)=g(ω1g(θ1x1+θ2x2+b1)+ω2g(θ3x1+θ4x2+b2)+c)  
(12)



				
In the above decision function all parameters
 and biases must be found at the same time using gradient descent. We 
are iterating forward, which means that iteration to update parameters 
must go back to each input data point in the training sample 
						xi,yi
					 in layer 
						l
					 until convergence is accomplished. This iteration process is called feedforward Neural Networks.

2.2 Backpropagation algorithm



 Another way to learn is to use the backpropagation algorithm
 (BP). But before we may consider the possibility of more complex ANN 
architectures. We may consider adding more neurons but also additional 
hidden layers to our Neural Networks, on what is commonly known as 
Multilayer Perceptron Network. BP requires that once the feedforward process has been completed and we have arrived to the output layer 
						L
					, then we go back on the entire network to perform a backward pass for all layers 
						l=L−1,L−2,...,2
					. In order to perform a backward pass we must redefine our variable 
						z
					 and the decision function. The function 
						z
					 is now:

					
z(l)=θ(l)Th(l-1)+b(l)  
(13)



				
And the decision function becomes:

					
h(l)=g(z(l))=g(θ(l)Th(l-1)+b(l))  
(14)



				
The first decision function is just the layer of inputs 
						h1=x
					, which are used to update the next decision function 
						h2=gθ1Th1+b1
					 and so forth until we get the output 
						hx=hL=gθL−1ThL−1+bL−1
					 which is a scalar vector. Because we are now using multiple neurons, we can understand 
						hl
					 as a vector as well as the input vector 
						x
					 and the parameters 
						θ
					 and 
						b
					. We must proceed in a similar way we obtained the gradients in 9, 10 and 11. First we must find the derivative of the function 
						gz
					 respect to the parameters 
						θ
					 and 
						b
					. For the vector of weights:

					
∂g(z(l))∂θ(l)=∂g(z(l))∂z(l)∂z(l)∂θ(l)  
(15)



				
And for the bias:

					
∂g(z(l))∂b(l)=∂g(z(l))∂z(l)∂z(l)∂b(l)  
(16)



				
The second part of the above derivatives, 
						∂zl/∂θl
					 and 
						∂zl/∂bl
					 comes from 13:

					
∂z(l)∂θ(l)=h(l-1)  
(17)



				

					
∂z(l)∂b(l)=I  
(18)



				
To find the first part of the above derivatives 15 and 16, we define 
						δl=∂gzl/∂zl
					. Because 
						zl+1=θl+1Thl+bl+1
					, then:

					
∂z(l+1)∂h(l)=θ(l+1)T  
(19)



				
and since 
						hl=gzl
					, then: 

					
∂h(l)∂z(l)=∂g(z(l))∂z(l)=g'(z(l))  
(20)



				
Now we can obtain the derivative 
						δl
					:

					
δ(l)=∂h(l)∂z(l)∂z(l+1)∂h(l)∂g(z(l))∂z(l+1)=θ(l+1)Tδ(l+1)⊙g'(z(l))  
(21)



				
Where the 
						⊙
					 is for the Hadamard product. Now we can find the updates for the gradient descent and perform the backpropagation:

					
Δθ(l)=∂g(z(l))∂θ(l)=δ(l)h(l-1)T  
(22)



				

					
Δb(l)=∂g(z(l))∂b(l)=δ(l)  
(23)



				

2.3 Resilient Backpropagation Neural Networks (RBP)



 The backpropagation algorithm allows the network to learn and get the parameters 
						θ
					 and 
						b
					 in a more refined way. The main drawback of both 
feedforward and backpropagation is that, some gradients may become zeros
 and then some neurons may deactivate themselves. In rare cases the data
 and initial values produce the deactivation of neurons weakening the 
network and decreasing the predictive power, what is know as vanishing gradient problem. This is the main motivation to develop more complex architectures called Deep Neural Networks or DNN.
Another algorithm commonly used in ANN is the heuristic Resilient Backpropagation
 algorithm (RBP). This algorithm is a slightly different version of the 
Backpropagation but instead of using the magnitude of the gradients 
						Δθ1
					, 
						Δθ2
					 and 
						Δb
					 we use their sign. The purpose of this modification, first proposed by Riedmiller and Braun [14] in 1993 and applied by Anastasiadis et al. [2]
 in 2005, was to adapt the learning rate over the entire neural network.
 The RBP converges faster than the common BP algorithm but keeps its 
more general attributes. Gunther and Fritsch [5] produced an efficient algorithm to estimate the RBP with weight backtraking.
With the Backpropagation algorithm we have seen that the weights are updated following the general form:

					
θij(l+1)=θijl+αΔθij(l)  




				
Where 
						θijl
					 means the weight from neuron 
						j
					 to neuron 
						i
					 in layer 
						l
					. In the previous section we found that the updated amount 
						Δθijl
					 was 
						Δθl=δlhl−1
					 (we removed the transpose upper letter T to facilitate explanation). We know that this is also:

					
Δθij(l)=∂z(l)∂θij(l)δ(l)  




				
The RBP algorithm proposes that the update is performed with the sign of the derivative rather than the size of it as follows:

					
Δθij(l)=-sign∂z(l)∂θij(l)δij(l)  
(24)



				
Another importance change is that the update parameter 
						δl
					 is changed to 
						δijl
					 in the following form:

					
δij(l)=min(η+⋅δij(l-1),δmax) ,if ∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) >0max(η-⋅δij(l-1),δmin) ,if ∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) <0δij(l)otherwise  




				
Where 
						0<η−<1<η+
					 are pre-set values. The value of 
						δijl
					 is updated in every step according with the change of sign of the derivative in 24 and the above definition. When the sign changes this means that a minimum has been missed so the network applies the either 
						η−⋅δijl−1
					 or 
						δmin
					 which ever larger. The reader may notice that this process 
also eliminates the need of determining exogenously the learning rate 
						α
					 as in the traditional backpropagation algorithm, because the parameter 
						η
					 is a close adaptative substitute.
The
 methods of weight backtraking is also based on heuristics, and the idea
 is to keep using previous weights for updating (some weights only). For
 example, if:

					
∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) ≥0, then Δθij(l)=-sign∂z(l)∂θij(l)δij(l)  




				
But if less than zero, we use the previous update: 

					
∂z(l-1)∂θij(l-1)⋅∂z(l)∂θij(l) <0, then Δθij(l)=Δθij(l-1)  




				
This implementation trick avoid the updating of the learning rate then avoiding using the otherwise
 option above. The advantages of using RBP algorithm is that reduces 
computation with the advantage of similar, if not better, precision. It 
is very useful when the data contains noise, which means that it 
preforms well when applied to financial time series data sets. In the 
next section we will present some results using RBP neural networks.


3 Time Series Forecasting



3.1 The data



The
 first task in this work is to forecast a time series using binary 
classification with ANN methods. A basic classification would be to 
describe the behaviour of a stock or stock index in order to predict its
 movement. Predicting stock prices is important as we would want to 
decide if we need to buy or sell a stock or predict the ups and downs of
 a price index. In this case we would want to define a label 
						y
					 with binary values 
						0,1
					 with zero for a drop in the stock prices compared to a day 
before, and one for an increase in the stock prices. We can use for 
example, the closing prices of stocks or stock indexes to construct this
 label. This is a practical way to observe movements in the stock 
prices, as we need to know if prices will go up or down for very 
practical decision making. For example, we may decide to sell if a stock
 price is likely to go down or buy when price is likely to go up. 
Broadly speaking, trading in the stock market is based in these simple 
decisions, and usually a good trader uses, among other tools, technical 
analysis to decide whether is time to sell or buy stock. Although we are
 not applying this binary classification problem to any specific stock, 
the underlying principle of classification remains the same.
The
 next question is defining the features that will be used to predict the
 movements in stock prices. In other words, we need the matrix of 
features x that will help to define the label y. We decided to use some technical analysis concepts as in Kim [11], most of them taken from Achelis [1]. Technical analysis indicators will be our features matrix x. An experienced trader may read the concepts in table 1
 and along with additional information then try to predict changes in 
stock prices. These features are mostly ratios of prices, moving 
averages or both.

					
Table 1. 
			
Selected features and formulas

	 Stochastic % K 	
										
											CPt−LLt−nHHt−n×100
										

									
	Stochastic % D (Stochastic moving average of K)	
										
											∑i=0n-1‍%Kt-in
										

									
	Slow %D (Moving average of %D) 	
										
											∑i=0n-1‍%Dt-in
										

									
	Momentum 	
										
											CPt-CPt-4
										

									
	Rate of Change (ROC) 	
										
											CPtCPt-n×100
										

									
	Williams’ %R 	
										
											Hn-CPtHn-Ln×100
										

									
	A/D Accumulation/Distribution Oscillator 	
										
											Ht-CPt-1Ht-Lt
										

									
	Disparity5 	
										
											CtMA5×100
										

									
	Price Oscillator (OSCP) 	
										
											MA5-MA10MA5
										

									
	Commodity Channel Index 	
										
											Mt-SMt0.015Dt
										 , where: 
	 	
										
											Mt=(Ht+Lt+Ct)/3
										

									
	 	
										
											SMt=∑i=1n‍Mt-i+1n
										 ,
	 	
										
											Dt=∑i=1n‍|Mt-i+1-SMt|n
										

									
	Relative Strength Index 	
										
											100-1001+(∑i=0n-1‍UPt-i/n)/(∑i=0n-1‍DWt-i/n)
										

									



				

					Table 1 shows twelve well known 
technical indicators for trading. These are constructed with simple 
market data such as closing price (CP), lowest low price (LL), highest 
high price (HH), high (H) and low (L) prices during the trading day or 
period and it is very common to use Moving Averages (MA) for their 
construction. The stochastic oscillators such as stochastic 
						%K
					 and 
						%D
					 are used by traders to know if an stock is overbought or 
oversold. The Momentum is used to see any change on the price trend 
while the Rate of Change (ROC) measures the speed of the ascent/descent 
of every new trend. The Williams’ Accumulation/Distribution indicator 
measures the market pressure, which advices to sell when Williams’ A/D 
is low and stock prices are high and buy when Williams’ A/D is high and 
market prices are low. The Disparity5 is just an ratio of the closing 
price with respect to the 5 days Moving Average and the OSCP or Price 
Oscillator is the growth of the moving average. The Commodity Channel 
Index (CCI) is used as a leading indicator to observe the strength of a 
stock, whether a stock is overbought or oversold. The Relative Strength 
Index (RSI) is used as a leading indicator to observe the historical 
strength of a stock using the ups and downs in historical closing 
prices. The WilliamsR is a momentum indicator that reflects how the 
close price compare with the highest price.
All features in table 1
 are associated with the prices of the stocks and are used to interpret 
the trends of stock market prices. The entire data set for a given stock
 market index will be the label y and the feature matrix x
 that describes the label. All technical analysis indicators will be 
used to classify our label in both directions, ups and downs for the 
entire stock market index. There are dozens more technical analysis 
indicators that can be used, but we are trying to use some the most 
popular and also applied in other similar research.
This
 section contains an empirical analysis using RBP algorithm in order to 
predict time series, particularly changes in stock price indexes. We 
chose to predict changes in six major European, Asian and North American
 stock market indexes. We used six stock indexes: The European STOXX50 
that contains blue chip stock from the 50 best performing companies in 
leading sectors in Europe; the DAX which is also an index that contains 
30 blue chip German companies; the Nikkei stock exchange index, the Hang
 Seng index which is the stock exchange index from Hong Kong, the 
Canadian Toronto Stock Exchange index and the Mexican Stock Exchange 
index IPC.
We decided to use daily data for each 
stock exchange from January 2000 to June 2019, less than five thousands 
daily observation in each market. Compared with the same data from 
1980’s and 1990’s, the period of analysis is high frequency data and 
contains sharp financial crashes, perhaps due to the new trading methods
 using electronic platforms and the availability of information online. 
Financial markers are now more competitive as communication technology 
has improved along with capital mobility. Table 5 in the appendix contains the summary statistics for the six markets on closing, high, low and open market prices.

3.2 Estimation



With the information on the average prices in each market, we first constructed our matrix of features 
						x
					 that were used to describe the label y, where y
 are the changes in close price. The idea is to approach to the daily 
changes in close prices in each stocks market. In this case, the 
classification problem will be to assign a label of 1 if the close price
 index in time 
						CPt
					 is higher than the previous day 
						CPt−1
					, and 0 otherwise so that 
						y→0,1
					. Our data points 
						x
					 will be the features that help us to find the weights 
						w
					 and the bias 
						b
					.
Because ANN is a supervised machine learning method, we are going to demand to the network to find the best way to predict y using the twelve technical analysis features constructed using indicators in table 1 (matrix 
						x
					). This matrix will serve as the input data and the main objective of the ANN algorithm is to find patterns in 
						x
					 so that to approach the vector y. Because the weights produced by the ANN are sensitive to the scale of each feature we must normalize the features matrix 
						x
					 and transform them into a matrix with values in the range of 
						0,1
					 to ensure large values do not overcome features with small values.
When the whole data set with y and 
						x
					 have been constructed, the next step is to divide the data 
set into a training and test sets. The training set will be used by each
 algorithm to learn and the second set for testing if predicted values 
match with the data points. In our analysis, we used the first 70% data 
points as training set and the remaining as test data set. In the 
appendix the reader will find the summary statistics for each feature x and the label y by stock market.
The
 only thing left for clarification will be the estimation of the Hit 
ratio for each prediction. After running each of the ANN models, we will
 get the predicted values using the test data into a new data set with 
predicted values for the label y^.
 One way to evaluate the performance of the ANN predictions, is to 
construct a hit ratio. Because the predicted values are real numbers and
 our test data set has a binary label, we must transform the predicted 
values into binary outcomes. We set up a threshold of 0.5 which mean 
that any predicted values higher than 0.5 will be set up to 1 (close 
price was higher than in previous day) if not equal to zero (close price
 was lower than in previous day). The prediction results are matched in 
the form:

					
Ri=1    if Predicted value=test data0    otherwise  
(25)



				
The prediction performance is measured using a hit ratio, defined by:

					
HR=1m∑i=1m‍Ri  
(26)



				
This hit ratio is the percentage of correct matches where 
						y
					 = y^. This is a simple coefficient that can be used to compare performance (prediction) for each neural network model.
The
 main part of the empirical analysis requires to use ANN to predict time
 series. We trained different single layer networks using traditional 
Backpropagation and Resilient Backpropagation Neural Network algorithm. 
At first, single layer neural networks were constructed with 6, 12, 18 
and 24 neurons each using standard logistic and error functions. Later 
we trained multi-layer networks with 6 and 12 neurons in three hidden 
layers. The results are shown in table 2.

					
Table 2. 
			
Financial Forecasting using Artificial Neural Networks

	Backpropagation (learning rate=0.1) 
	INDEX \ Neurons	6	12	18	24	6-6-6	12-12-12
	TSE (Canada)	0.4522	0.4522	0.4522	0.5478	0.4522	0.4522
	IPC (Mexico)	0.4905	0.5095	0.4905	0.5095	0.4905	0.4905
	Nikkei (Japan)	0.4600	0.5400	0.4600	0.5400	0.4600	0.4600
	Europe50	0.4763	0.4763	0.4763	0.5237	0.4763	0.4763
	Han Seng (Hong Kong)	0.4757	0.5243	0.4757	0.5243	0.4757	0.4757
	DAX (Germany)	0.4612	0.5388	0.4612	0.5388	0.4612	0.4612
	Resilient Backpropagation (weight bactracking) 
	INDEX \ Neurons	6	12	18	24	6-6-6	12-12-12
	TSE (Canada)	0.5478	0.5959	0.6678	0.5458	0.5478	0.5478
	IPC (Mexico)	0.5095	0.5194	0.5095	0.5095	0.5095	0.5095
	Nikkei (Japan)	0.4892	0.4929	0.5743	0.4899	0.5131	0.5049
	Europe50	0.4564	0.4515	0.4522	0.4536	0.4557	0.4529
	Han Seng (Hong Kong)	0.5028	0.5125	0.4944	0.4993	0.5271	0.5049
	DAX (Germany)	0.5287	0.5273	0.5745	0.5300	0.5388	0.5179



				
One disadvantage of the ANN is the cost in 
training increases when the architecture becomes more complex. As the 
number of neurons and hidden layers increase, the longer the training 
time is required. On the other hand, ANN with backpropagation may obtain
 better performance due to a more flexible updating. Table 2
 contains the hit ratios for different ANN models with different 
architectures. The upper part contains the hit ratios using traditional 
backpropagation with a learning rate of 0.1 while the lower part 
contains the hit ratios using resilient backpropagation with weight 
backtracking.
With the only exception being the 
Europe50 index, we find larger hit ratios using resilient 
backpropagation. This does not mean that we cannot achieve better 
results in traditional backpropagation, but for that we need to find the
 best learning rate and architecture. And this will require additional 
statistical analysis in order to decide the correct learning rate, as 
each model is different.
On the other hand, 
resilient backpropagation has a flexible and heuristic way to choose the
 learning rate and update the gradient for a better descent. The reader 
may notice that there is little room for improvement in each model using
 backpropagation as we use a single learning rate for every model. 
However, resilient backpropagation has room for improvement as the 
learning is controlled during convergence. Estimation in table 2
 will vary as long as we choose different activation functions, learning
 rates and gradient methods for updating, but we decided to leave model 
selection for future research.


4 Contribution measures




 This work focuses not only on financial forecasting using ANN but also 
offers a descriptive analysis on the overall performance of the features
 used for prediction. This is an important issue because we need 
information on the relative relevance of each feature in the learning 
process. We know that each feature was normalized when constructing the 
matrix x, so we may be able to apply some indicators on similar data and obtain some comparable results.

				
Table 3. 
			
Correlation coefficients: Garson, Yoon and Trapezoid Contribution Measures

	Index	Garson\Yoon	Garson\Trapezoid	Yoon\Trapezoid
	DAX	0.625	0.816	0.808
	NIKKEI	0.789	0.851	0.931
	IPC	0.550	0.722	0.908
	HS	0.050	0.307	0.881
	EU50	0.619	0.621	0.512
	TSE	0.511	0.698	0.864



			
In order to find the relative importance of 
each feature we must apply a measure using the weights from the ANN 
analysis. The magnitude of each weight in every network tell us about 
the relative importance of each feature. This section provides with some
 measures on the relative contribution of each feature on the final 
output in a Neural Network. We estimated each contribution measure on 
the best single hidden layer ANN neural network. For example, if the 
input layer has 
					i=1,2,...I
				 nodes, and the hidden layer has 
					j=1,2,...,J
				 neurons, the final output weights will come from equal number of nodes 
					k=1,2,...,J
				. At first, we introduce two different measures called Garson and Yoon measures, similar to Huang et al. [8]. The first contribution measure is the Garson measure:

				
GC=∑j=1J‍|wji||vjk|∑i=1I‍∑i=1I‍∑j=1J‍|wji||vjk|∑i=1I‍|wji|  




			
And the second is the Yoon measure:

				
YC=∑j=1J‍wjivji∑i=1I‍|∑j=1J‍wjivji|  




			
The Garson measure can be interpreted as 
percentages of contribution on the final output. Yoon contribution index
 is more complicated to interpret, though we may interpret a high 
absolute value of Yoon measure as high relevance. Both measures are 
designed for a single layer Neural Network, then the best single layer 
results for each model. The results of the estimation are shown in table 4
 for each market (the number in the parenthesis shows the number of 
neurons in the hidden layer). For four markets the ROC seems to be the 
feature with the highest contribution to the financial forecasting, 
except for the Hang Sheng index and the Euro50 index. These were the 
only two indexes where we used the best single layer hit ratio using 
backpropagation.

				
Table 4. 
			
Contribution Measures for each Feature by Stock Market

	Features	TSE (18n) 	Nikkei (18n) 	DAX (18n) 
	 	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid
	A/D	1.67%	-0.019	2.8%	5.52%	-0.018	2.03%	5.58%	0.027	2.66%
	CCI	2.43%	-0.005	3.6%	6.55%	0.015	3.45%	6.56%	-0.006	3.27%
	Disp10	7.26%	-0.058	3.8%	8.21%	-0.017	4.12%	7.07%	-0.041	3.01%
	Disp5	9.92%	-0.027	3.7%	9.07%	0.013	4.35%	7.16%	-0.006	4.84%
	fastD	12.15%	-0.023	10.0%	8.38%	-0.093	10.67%	9.20%	-0.040	7.44%
	fastK	8.08%	0.010	3.8%	6.73%	0.085	4.93%	8.37%	-0.040	5.00%
	Moment	9.56%	0.035	4.9%	8.42%	0.005	4.66%	10.49%	-0.020	5.85%
	OSCP	9.65%	0.015	3.9%	9.19%	0.012	3.54%	8.44%	-0.009	4.05%
	ROC	15.73%	0.637	38.5%	13.84%	0.722	42.38%	13.42%	0.558	39.58%
	RSI	7.94%	0.010	5.4%	8.70%	-0.001	3.61%	8.82%	0.042	5.75%
	slowD	4.08%	-0.020	5.3%	6.49%	0.005	4.39%	6.04%	0.011	4.18%
	WilliamsR	11.53%	-0.143	14.3%	8.89%	0.015	11.87%	8.84%	-0.201	14.37%
	 	 	 	 	 	 	 	 	 	 
	Features	IPC (12n) 	HSI (12n) 	EU50 (24n) 
	 	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid	Garson	Yoon	Trapezoid
	A/D	3.35%	0.001	1.33%	7.54%	0.034	5.71%	7.87%	-0.076	6.38%
	CCI	6.84%	0.001	2.95%	8.24%	0.118	8.44%	9.88%	0.162	9.77%
	Disp10	7.49%	0.018	2.99%	7.98%	0.107	9.58%	7.86%	0.033	8.41%
	Disp5	7.13%	-0.003	2.86%	8.39%	0.124	9.48%	7.86%	0.087	8.05%
	fastD	10.21%	-0.021	8.45%	7.05%	0.003	7.17%	7.71%	-0.052	7.09%
	fastK	8.79%	-0.098	7.90%	9.59%	0.238	15.42%	9.22%	0.110	13.09%
	Moment	7.51%	-0.003	1.42%	7.31%	0.081	6.61%	7.07%	0.027	7.27%
	OSCP	10.09%	-0.022	3.23%	8.05%	0.056	7.65%	8.43%	0.078	8.23%
	ROC	13.29%	0.717	49.24%	8.37%	0.065	7.44%	9.10%	0.139	9.73%
	RSI	9.15%	0.003	2.27%	8.95%	0.130	9.35%	7.75%	0.099	7.36%
	slowD	6.41%	0.004	4.47%	6.21%	0.017	6.23%	8.43%	-0.046	8.37%
	WilliamsR	9.75%	-0.109	12.90%	12.33%	-0.028	6.91%	8.82%	0.090	6.25%



			

				
Table 5. 
			
Standard Statistics by Stock Market

	High price 
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,346.74	2,795.28	6,801.95	2,319.65	13,596.89	11,277.24	0.49	-0.78
	Nikkei	4,776	14,120.67	4,285.77	13,636.81	7,100.77	24,448.07	17,347.30	0.41	-0.98
	IPC	4,876	28,553.79	15,434.73	31,543.24	5,109.40	51,772.37	46,662.97	-0.24	-1.45
	Hang Seng	4,800	19,577.61	5,696.33	20,623.56	8,430.62	33,484.08	25,053.46	-0.06	-0.86
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,867.28	2,843.10	12,294.60	5,812.90	16,672.70	10,859.80	-0.31	-1.04
	Low Price 
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,233.77	2,780.47	6,691.01	2,188.75	13,517.81	11,329.06	0.49	-0.77
	Nikkei	4,776	13,935.29	4,257.91	13,403.06	6,994.90	24,217.26	17,222.36	0.42	-0.96
	IPC	4,876	28,168.76	15,280.96	31,087.91	4,950.71	51,524.23	46,573.52	-0.23	-1.46
	Hang Seng	4,800	19,316.24	5,639.54	20,386.76	8,331.87	32,897.04	24,565.17	-0.06	-0.88
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,738.87	2,834.99	12,151.10	5,678.30	16,589.80	10,911.50	-0.29	-1.05
	Open Price 
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,293.06	2,788.12	6,746.28	2,203.97	13,577.14	11,373.17	0.49	-0.77
	Nikkei	4,776	14,032.76	4,273.57	13,553.15	7,059.77	24,376.17	17,316.40	0.42	-0.97
	IPC	4,876	28,362.18	15,362.55	31,307.40	5,077.39	51,590.48	46,513.09	-0.23	-1.46
	Hang Seng	4,800	19,460.25	5,672.78	20,518.17	8,351.59	33,335.48	24,983.89	-0.06	-0.87
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,807.88	2,839.82	12,219.80	5,689.40	16,642.10	10,952.70	-0.30	-1.04
	Close Price 
	Index	N	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	DAX	4,942	7,292.11	2,787.72	6,748.30	2,202.96	13,559.60	11,356.64	0.49	-0.77
	Nikkei	4,776	14,027.96	4,273.60	13,541.62	7,054.98	24,270.62	17,215.64	0.42	-0.97
	IPC	4,876	28,368.40	15,360.10	31,321.52	5,081.92	51,713.38	46,631.46	-0.23	-1.46
	Hang Seng	4,800	19,450.48	5,665.96	20,511.59	8,409.01	33,154.12	24,745.11	-0.06	-0.87
	EU50	4,850	3,241.86	717.30	3,111.17	1,809.98	5,464.43	3,654.45	0.86	0.52
	TSE	4,917	11,805.41	2,838.86	12,220.20	5,695.30	16,669.40	10,974.10	-0.30	-1.04



			

				
Table 6. 
			
Summary Statistics Features

	TSE (Canada)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.54	0.50	1.00	0.00	1.00	1.00	-0.14	-1.98
	AD	13175.28	4966.81	12835.92	5126.09	21788.43	16662.33	0.22	-1.33
	CCI	19.59	109.43	37.32	-330.81	327.16	657.97	-0.43	-0.51
	FastK	58.82	30.98	64.24	0.00	100.00	100.00	-0.35	-1.19
	FastD	58.82	28.77	63.90	0.25	100.00	99.75	-0.34	-1.23
	SlowD	58.82	27.88	63.72	1.14	98.42	97.28	-0.34	-1.22
	Williams R	41.18	30.98	35.76	0.00	100.00	100.00	0.35	-1.19
	Disp10	100.07	1.71	100.26	85.94	108.36	22.42	-1.15	6.55
	Disp5	100.03	1.15	100.14	90.03	106.43	16.40	-0.82	6.09
	Moment	6.49	229.82	23.60	-1884.90	1225.50	3110.40	-0.83	4.29
	OSCP	0.00	0.01	0.00	-0.08	0.04	0.12	-1.23	6.44
	ROC	0.01	1.07	0.06	-9.79	9.37	19.16	-0.66	10.07
	RSI	53.14	12.05	53.83	12.78	84.00	71.23	-0.27	-0.31
	IPC (Mexico)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.53	0.50	1.00	0.00	1.00	1.00	-0.12	-1.99
	AD	28733.10	19597.32	31712.29	973.64	59315.71	58342.07	-0.13	-1.54
	CCI	20.33	110.74	42.03	-357.18	371.29	728.47	-0.38	-0.51
	FastK	57.88	30.91	63.36	0.00	100.00	100.00	-0.34	-1.19
	FastD	57.90	28.86	63.21	0.51	99.88	99.37	-0.34	-1.25
	SlowD	57.92	27.99	63.04	1.91	99.57	97.66	-0.34	-1.25
	Williams R	42.12	30.91	36.64	0.00	100.00	100.00	0.34	-1.19
	Disp10	100.18	2.20	100.29	84.56	112.72	28.17	-0.57	4.27
	Disp5	100.08	1.47	100.14	89.78	109.98	20.20	-0.33	4.76
	Moment	29.31	665.07	51.18	-4496.07	3554.29	8050.36	-0.39	3.65
	OSCP	0.00	0.01	0.00	-0.08	0.07	0.15	-0.72	4.45
	ROC	0.04	1.29	0.07	-8.27	10.44	18.71	0.00	5.38
	RSI	53.53	12.56	54.50	11.49	86.44	74.94	-0.20	-0.51
	Nikkei (Japan)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.51	0.50	1.00	0.00	1.00	1.00	-0.05	-2.00
	AD	-33210.80	4452.53	-34423.82	-40305.15	-20749.27	19555.87	0.66	-0.51
	CCI	8.83	109.64	19.54	-430.68	321.73	752.40	-0.24	-0.67
	FastK	55.24	32.47	58.55	0.00	100.00	100.00	-0.20	-1.37
	FastD	55.25	30.28	58.34	0.22	100.00	99.78	-0.19	-1.41
	SlowD	55.26	29.40	58.24	0.66	98.49	97.83	-0.18	-1.40
	Williams R	44.76	32.47	41.45	0.00	100.00	100.00	0.20	-1.37
	Disp10	100.03	2.40	100.21	79.79	113.32	33.53	-0.72	4.09
	Disp5	100.01	1.61	100.15	86.81	113.79	26.98	-0.65	5.95
	Moment	2.43	381.10	25.95	-2415.93	1671.34	4087.27	-0.59	2.75
	OSCP	0.00	0.01	0.00	-0.10	0.07	0.16	-0.76	3.69
	ROC	0.00	1.52	0.03	-12.11	13.23	25.35	-0.40	6.28
	RSI	51.83	12.18	51.70	13.54	92.94	79.41	0.10	-0.30



			

				
Table 7. 
			
Summary Statistics Features (continue)

	Europe50	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.51	0.50	1.00	0.00	1.00	1.00	-0.03	-2.00
	AD	2140.52	717.30	2009.83	708.64	4363.09	3654.45	0.86	0.52
	CCI	8.84	108.23	23.32	-366.03	367.35	733.38	-0.31	-0.60
	FastK	55.99	36.96	61.44	0.00	100.00	100.00	-0.25	-1.44
	FastD	56.00	34.09	61.01	0.00	100.00	100.00	-0.24	-1.43
	SlowD	56.02	32.95	60.76	0.00	100.00	100.00	-0.23	-1.43
	Williams R	44.01	36.96	38.56	0.00	100.00	100.00	0.25	-1.44
	Disp10	99.98	2.23	100.23	84.30	110.57	26.27	-0.76	3.08
	Disp5	99.99	1.53	100.10	89.74	107.94	18.20	-0.44	2.97
	Moment	-1.23	85.01	5.83	-487.77	435.31	923.08	-0.46	2.49
	OSCP	0.00	0.01	0.00	-0.07	0.05	0.12	-0.75	2.97
	ROC	-0.01	1.46	0.02	-9.01	10.44	19.45	-0.06	4.71
	RSI	51.48	11.04	52.21	14.14	77.81	63.67	-0.22	-0.54
	Han Seng (HK)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.52	0.50	1.00	0.00	1.00	1.00	-0.06	-2.00
	AD	21143.14	6147.85	23233.24	8928.13	34672.11	25743.98	-0.41	-1.10
	CCI	10.54	109.03	19.31	-338.04	300.85	638.89	-0.17	-0.86
	FastK	54.97	32.60	58.64	0.00	100.00	100.00	-0.19	-1.42
	FastD	54.97	30.54	58.01	1.33	99.59	98.26	-0.17	-1.45
	SlowD	54.97	29.66	57.92	2.98	98.79	95.81	-0.17	-1.44
	Williams R	45.03	32.60	41.36	0.00	100.00	100.00	0.19	-1.42
	Disp10	100.06	2.39	100.23	76.16	110.29	34.13	-0.60	4.57
	Disp5	100.03	1.59	100.10	82.57	113.26	30.68	-0.47	7.04
	Moment	9.65	553.11	33.43	-4025.33	2952.83	6978.16	-0.35	3.34
	OSCP	0.00	0.01	0.00	-0.09	0.06	0.16	-0.54	3.23
	ROC	0.01	1.47	0.05	-13.58	13.41	26.99	-0.10	8.05
	RSI	52.11	12.58	52.33	15.05	89.41	74.36	-0.04	-0.51
	Dax (Germany)	Mean	SD	Median	Min	Max	Range	Skew	Kurtosis
	Label	0.53	0.50	1.00	0.00	1.00	1.00	-0.12	-1.99
	AD	6225.18	4595.94	5056.53	-825.28	15989.25	16814.53	0.66	-0.79
	CCI	15.34	109.28	34.90	-303.85	346.90	650.75	-0.34	-0.69
	FastK	57.98	31.51	63.09	0.00	100.00	100.00	-0.31	-1.29
	FastD	57.98	29.34	62.85	0.45	99.65	99.21	-0.29	-1.33
	SlowD	57.98	28.45	62.83	2.20	99.40	97.20	-0.28	-1.32
	Williams R	42.02	31.51	36.91	0.00	100.00	100.00	0.31	-1.29
	Disp10	100.07	2.34	100.35	84.06	111.92	27.86	-0.79	3.52
	Disp5	100.03	1.57	100.15	90.31	108.14	17.82	-0.50	3.18
	Moment	4.40	187.76	16.42	-1267.49	807.60	2075.09	-0.49	2.14
	OSCP	0.00	0.01	0.00	-0.08	0.06	0.14	-0.87	3.57
	ROC	0.01	1.47	0.08	-8.87	10.80	19.67	-0.06	4.59
	RSI	52.78	11.90	53.36	11.24	84.64	73.40	-0.17	-0.41



			
 One of the problems of the above measures is consistency. Both measures are positively correlated but just. For example, table 3
 shows the correlation coefficient between the Garson Measure and the 
Yoon Measure. Both measures are highly correlated when analysing the 
Nikkei Index, but they are completely different in the Hang Seng index 
with a correlation of just 0.05. Another drawback of the Garson and Yoon
 measures is that they become difficult to calculate in more complex 
network architectures. Under such considerations, a different measure is
 needed to evaluate the contribution of each feature in a ANN model.
We
 decided to give a geometric interpretation to the weights in order to 
establish their relevance. For example, in a one-hidden layer neural 
network, we interpret the weights 
					wji
				 and 
					vjk
				 as the lengths of the opposite sides of a triangle. 
Multiplying the network weights in this form we can interpret the entire
 measure as the area of several triangles that make up to a irregular 
trapezoid:

				
TC=∑j=1J‍|wji||vjk|2  




			
An appealing feature of this Trapezoid 
Contribution measure is that can be applied to any number of hidden 
layers and neurons in the network and is quite easy to calculate and 
interpret if we make percentages with the whole area and its parts. Table 4
 show the relative importance of each feature from the ANN analysis 
using Garson, Yoon and the Trapezoid measures. For Japan, Canada, Mexico
 and German indexes the ROC is the most influential feature to predict 
the stock market index while the fastK is the most important in the Hong
 Kong and European50 indexes.
We may notice that 
the new Trapezoid contribution measure is highly correlated with the 
Yoon measure but also moderately correlated with the Garson measure. 
Most importantly, it is easy to calculate and can be applied to more 
complex network architectures.

5 Final Conclusions




 This work contains a financial forecasting using both traditional 
backpropagation and Resilient Backpropagation Neural Networks and also 
an analysis on the relative importance of features used for forecasting.
 We use standard single layer and multi-layer feed forward architectures
 to evaluate the performance of both algorithms, along with sigmoid 
activation function and error-correction learning rule, which are common
 for time series forecasting. The use of the RBP algorithm provides a 
practical solution to the determination of the learning rate and is 
especially helpful for data sets with noise such as financial stock 
indexes. The Resilient backpropagation with weight backtracking is a 
very flexible algorithm that can adjust to changes in model complexity. 
Some times it can find a better solution when the model specification 
changes.
This work provides a simple contribution
 measure in order to evaluate the importance of features in financial 
times series forecasting. The main reason comes from the lack of 
consistency in two available indexes: the Garson and the Yoon 
contribution measures. A simple measure using the concept of an area of a
 trapezoid captures de idea of contribution to the prediction using the 
ANN weights. This Trapezoid contribution measure uses the ANN weights 
from the best model (highest hit ratio from a single layer ANN) to 
calculate an area of an irregular trapezoid for every feature variable. 
Although this concept is simple it reflects the magnitude and influence 
of each weight in the network and can be interpreted as contribution to 
the forecasting.
We used the trapezoid 
contribution measure along with the Garson and the Yoon measures to 
analyse the relevance of each feature in the best ANN model for each of 
the six stock exchange indexes. We concluded that the ROC is perhaps a 
very relevant feature at least for four of the stock exchange indexes 
used: IPC, TSE, DAX and Nikkei. The European50 index and the Hang Seng 
index seem to respond more to the FastK indicator despite the Garson and
 Yoon contribution measures are not consistently showing this. In this 
respect, the trapezoid contribution measure offers additional relevant 
information that can be used to evaluate the contribution of each 
feature in the network.
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