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Abstract

This
 article studies the econometric modeling and the projection of growth 
rates of the nominal exchange rate (Peso/Dollar) from 1995 to 2018. 
Applying Bayesian simulation methods, the best data modeling fit between
 linear and non-linear econometric approaches is studied by introducing 
Markovian regime change parameters. The Bayes factor for model selection
 provides the following evidence: in the analysis of daily growth rates 
there are periods with low, medium, and high volatility. In the monthly 
rates, changes were also found in the mean and the volatility of the 
process. The linear autoregressive econometric model is not supported by
 the data in any case. Furthermore, instead of structural changes in 
these rates, evidence of state-dependent parameters is present. The high
 volatility in both data frequencies coincides with the sub-prime crisis
 in 2008-2009, but also with other sample periods. Moreover, an optimal 
weighting approach is applied to Markovian regime change models to study
 forecast errors in the sample. From this exercise, the forecasting 
errors of the exchange rate growth rates are lower than those of the 
linear autoregressive model. Finally, the out-of-sample errors of regime
 change models and optimal methods, in most cases, exceed those of 
linear inferences in both data frequencies. 
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Resumen

Este
 artículo estudia el modelado econométrico y pronóstico de tasas de 
crecimiento del tipo de cambio nominal (Peso/Dólar) de 1995 a 2018. 
Aplicando métodos de simulación Bayesiana se estudia la mejor modelación
 de ajuste a los datos entre enfoques econométricos lineales y 
no-lineales introduciendo parámetros Markovianos de cambio de régimen. 
El factor de Bayes para seleccionar modelos proporciona la siguiente 
evidencia: en el análisis de tasas de crecimiento diarias hay periodos 
con baja, media y alta volatilidad. En las tasas mensuales, también se 
encontraron cambios en la media y la volatilidad del proceso. El modelo 
econométrico autorregresivo lineal no es soportado por los datos en 
ningún caso. Además, en lugar de los cambios estructurales en dichas 
tasas, hay evidencia de parámetros dependientes del estado. La alta 
volatilidad en ambas frecuencias de datos coincide con la crisis sub-prime
 en 2008-2009, pero también con otros períodos de la muestra. Mas aún, 
se aplica un enfoque de ponderación óptimo a modelos Markovianos de 
cambio de régimen para estudiar los errores de pronóstico en la muestra.
 De este ejercicio, los errores de pronóstico de las tasas de 
crecimiento del tipo de cambio son menores a los del modelo lineal 
autorregresivo. Finalmente, los errores fuera de la muestra de modelos 
de cambio de régimen y métodos óptimos, en la mayor parte de los casos, 
superan aquellos de las inferencias lineales en ambas frecuencias de los
 datos. 
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1. Introduction
The
 study exchange rate in emerging markets is a subject of great 
importance for academics, financial researchers, central bank and 
decision makers, where the concept of volatility can be approximated as a
 measure of risk. It is usually measured by deviations of the variance 
of the studied series. However, different types of risk exist and there 
is no consensus since new empirical models emerge when new data arises (Granger 2002).
 For example, it is argued that a linear statistical model cannot 
capture cyclical patterns observed in financial and economic time series
 (Hamilton 2005).
There
 are studies of exchange rate markets about its determinants, efficiency
 hypothesis, forecasting and volatility. Some of them apply linear 
autoregressive models (AR), conditional heteroskedasticity modeling 
(GARCH) and Markov Switching (MS) specifications. However, the 
appropriate adjusting of the model to the data is not always discussed. 
That is, in most of the literature, the model specification is 
exogenously imposed by assumption. Therefore, the economic implications 
and forecasting might change under a misspecification of the model. For 
example, in Frühwirth-Schnatter (2001) is discussed the number of states assumed in the switching specification of Engel and Kim (1999), who studied the U.S./U.K. real exchange rate.
The
 literature in switching modeling is huge. The likelihood of persistence
 or changes in the mean and volatility of the process can be modeled 
using the regime switching model, that allows state dependent parameters
 over time. From the seminal works of Hamilton (1989), Hamilton and Susmel (1994), and in particular the paper of Engel (1994)
 about exchange rates, there is a plenty of research in macroeconomics 
and financial econometrics with regime switching modeling (e.g. 
co-movements in economic variables; changes in volatility in cycle 
fluctuations; switching DSGE models; business cycle turning points in 
real time and forecasting; and many more), see the surveys of Diebold and Rudebusch (1999), Kim and Nelson (1999b), Hamilton and Raj (2002) and Frühwirth-Schnatter (2006). However, the MS framework has been assumed in many occasions without testing its existence.
Studies of the foreign exchange rate markets with MS frameworks attempt to answer different financial issues, Clarida et al. (2003), Chen (2010), Psaradakis et al. (2004) among others. For the Mexican exchange rate, Brown and Curci (2002)
 studied the relationship between the volatility in the Mexican peso 
spot market and futures contracts trading activity by a linear 
auto-regression vector (VAR); a MS autoregressive model with two states 
to explain the bias implied in the peso forward market is suggested in Bazdresch and Werner (2005); and Benavides and Capistrn (2012)
 mixed GARCH models by using switching indicators to change between 
different volatility specifications. They claimed that these 
combinations of models were statistically superior in terms of 
forecasting performance to individual models.
The present paper is very close to Ibarra Salazar et al. (2017) and Islas-Camargo et al. (2017).
 In the first, determinants of the nominal exchange rate by structural 
models suggested by the financial theory were studied. They imposed and 
proved the existence of a structural break in the sub-prime crisis in 
2008 to 2009, but this break should be endogenous to the model. In the 
second work, it is argued that a two state MS model to study the 
hypothesis of efficiency in the forward exchange rate leads to different
 economic implications than a linear model. However, the model selection
 based on the likelihood ratio test is subject to the problem of 
nuisance parameters (Carrasco et al. 2014). Our study complements the findings of these two works.
Hence,
 the contribution of the present paper is to study the econometric 
modeling and forecasting of the nominal Mexican exchange rate 
(Peso/Dollar). Under a Bayesian approach, the model selection of the 
econometric modeling for the exchange growth rates is carried out. This 
selection suggested is based on the Bayes factor which tests the number 
of lags, parameters subject to regime switching, and the number of 
states. The model specification issue should not be discarded since the 
economic implications, forecasting and conclusions are based on the most
 reliable model conditional to the data. The associated strong financial
 shocks of the Mexican exchange market yield that the assumptions of the
 standard linear econometric models might not hold. This paper does not 
study determinants to explain volatility exchange rate, financial issues
 of this market, nor an explanation of the market shocks. Instead, it 
provides empirical evidence for an appropriate modeling and forecasting 
of this exchange market given by their own dynamics to study similar 
topics in future research.
The presence of MS parameters in an observed single equation and model selection is studied in Frühwirth-Schnatter (2004) and Carrasco et al. (2014).
 These works provide two different approaches to test for that. The 
first is based on Bayesian methods and the latter is based on testing 
the parameters on the linear modeling under the null hypothesis by the 
frequentist approach. On the other hand, the model selection in high 
frequency data and GARCH modeling with MS frameworks is studied by the 
Bayesian approach in Bauwens et al. (2014). 
They claim that, if there is evidence of structural breaks or state 
dependence in the volatility, the MS frameworks are preferred over the 
standard GARCH models. However, in our paper we only focus on 
autoregressive modeling with state dependent volatility in a wide set of
 Markov switching heterogeneity. It can be shown that, this is nested in
 a GARCH model with MS parameters, and the periods of time inferred with
 changes in the states are very similar.
The empirical financial time series in emerging markets are characterized by high instability Aggarwal, Inclan, and Leal (1999),
 the stylized facts about these series are usually very volatile and 
have excess kurtosis, asymmetries, non-normal distributions and absence 
of linear autocorrelation (Fama 1965), volatility clusters (Cont 2001), and non-constant volatilities, see Loschi et al. (2005).
 Therefore, an econometric model for the Mexican exchange rate with 
constant parameters over time and the assumptions related to linear 
modeling might not be very useful. For example, in Mexican financial 
data Lopez Herrera (2004), Lopez-Herrera and Venegas-Martinez (2011), Lopez-Herrera et al. (2011) and Heath and Kopchak (2015)
 have studied Markovian models and volatility, but in these studies the 
model specification has been imposed by the researchers. An exception is
 the work of Cabrera et al. (2018) where 
changes in the volatility of the Mexico stock exchange are studied. 
Based on the Bayes factor model selection there were found three 
different states, and the growth rates of the stock exchange in the 
sub-prime crisis are captured in the high volatility state. However, any
 forecasting exercise was neglected in the last paper. Our paper is very
 close to the later, but the Markov switching heterogeneity has been 
extended, and a forecasting exercise is carried out.
Finally,
 Markov switching models have been recognized from a discrepancy between
 in-sample and out-of-sample performance. In-sample analysis the Markov 
switching models suggest interesting features like changes of the 
financial and economic time series given by cycle fluctuations and 
volatility. However, the out of-sample performance, is frequently 
inferior to simple linear models in terms of loss functions. This issue 
was studied in Boot and Pick (2017). They 
provided an optimal weights in Markov switching frameworks that can beat
 the linear models forecasting errors by choosing the model 
specification that minimize the mean of these errors. Different to this 
work, we proceed as follows: by applying Bayesian simulation methods, 
the estimation of the Marginal Likelihood (ML) is carried out similar to
 Frühwirth-Schnatter (2004), but for a 
wider set of MS heterogeneity models. This, to provide enough evidence 
of best fit to data model (Mexican exchange growth rates from 1995 to 
2018 in daily and monthly frequency). The model selection is based on 
the Bayes factor according to Kass and Raftery (1995).
 Once the best fit to data model is chosen, there will be discussed some
 important issues about economic implications, volatility and 
forecasting of the Mexican exchange growth rates and levels. The last, 
based in the optimal weighting approach in MS models of Boot and Pick (2017).
The
 structure of the paper is as follows: in Section 2 there are reported 
some statistical properties of the Mexican exchange rate (Peso/Dollar); 
in Section 3 the econometric modeling and the Bayesian estimation 
procedure are described. Moreover, some issues about model selection are
 discussed; in Section 4 the empirical application results, the exchange
 rate in-sample and out-of-sample forecasting are discussed. Finally, 
conclusions are presented in Section 5.

2. Nominal Mexican exchange rate (Peso/Dollar)
In
 this section, the statistical moments and plots of the nominal exchange
 rate (Peso/Dollar) are discussed. The data is studied in exchange 
growth rates at different frequencies (i.e., daily and monthly data) 
from April 1995 to May 2018. The analysis suggests that independent of 
the frequency, the nominal exchange rates are not stationary time 
series, and the sample moments present changes over time. 
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Figure 1. 
		
Mexican exchange rate (Peso/Dollar)



			
In Figure 1, the 
daily and monthly exchange rate and their percentage of growth are 
plotted together to compare the data at different frequencies. These 
plots show several periods of high volatility beside the sub-prime 
crisis from 2008 to 2009. Therefore, the graphical evidence suggests 
that the volatility might not be constant over time. From both plots, 
the nominal exchange rates are not stationary time series. It is omitted
 the standard stationary tests at the literature, since they are based 
on constant parameters over time. This last assumption does not hold as 
it will be shown later. However, Ibarra Salazar et al. (2017) presented these tests that reject the hypothesis of stationary monthly exchange rate.
In Table 1,
 it is presented the sample mean and the standard deviation (Std) of the
 daily and monthly exchange growth rates by year and for the full 
sample. The mean of the daily data is very close to zero in every year 
and 0.02 for the full sample. This means that the daily average growth 
rate is positive, so the exchange rates increase over time. The 
associated daily volatility, given by the standard deviation, is close 
and greater than one in the years 1995, 2008, 2009 and 2016. That is, in
 these years (including the sub-prime crisis) there are high daily 
volatility of the exchange rates. The average of the daily volatility in
 the full sample is 0.64. On the other hand, the annual mean of the 
monthly growth rate is higher in the years 1995, 2008, 2015 and 2016, 
while the monthly growth rate average mean of the full sample is 0.50. 
Therefore, the monthly average growth of the exchange rates is positive 
and high. The years of monthly high volatility are 1995, 2008, 2009, 
2016 and 2017, and the average monthly volatility is 2.32. In summary, 
there is evidence that the volatility and the mean of the exchange 
growth rates change over time. 

				
Table 1. 
			
Sample moments of the Mexican exchange growth rates

	Data	Year	1995	1996	1997	1998	1999	2000	2001	2002	2003
	Daily 	 Mean 	 0.08 	 0.01 	 0.01 	 0.08 	 -0.01 	 0.01 	 -0.02 	 0.05 	 0.03 
	 Std 	 1.31 	 0.44 	 0.56 	 0.7 	 0.6 	 0.48 	 0.49 	 0.49 	 0.57 
	Monthly 	 Mean 	 4.25 	 0.32 	 0.4 	 1.61 	 -0.48 	 0.11 	 -0.24 	 0.85 	 0.77 
	 Std 	 5.12 	 1.51 	 1.7 	 3.26 	 1.78 	 1.89 	 1.63 	 1.41 	 2.31 
		Year	2004	2005	2006	2007	2008	2009	2010	2011	2012
	Daily 	 Mean 	 0 	 -0.02 	 0.01 	 0 	 0.1 	 -0.02 	 -0.02 	 0.05 	 -0.03 
	 Std 	 0.4 	 0.37 	 0.45 	 0.35 	 1.16 	 0.9 	 0.63 	 0.76 	 0.66 
	Monthly 	 Mean 	 0.18 	 -0.53 	 0.21 	 -0.02 	 1.7 	 0.06 	 -0.49 	 0.91 	 -0.36 
	 Std 	 1.45 	 0.9 	 1.85 	 1.15 	 5.79 	 3.54 	 1.94 	 2.79 	 2.71 
		Year	2013	2014	2015	2016	2017	2018	Full sample 
	Daily 	 Mean 	 0.01 	 0.05 	 0.06 	 0.08 	 -0.02 	 0 	 Mean 	 0.02 
	 Std 	 0.65 	 0.4 	 0.66 	 1.02 	 0.65 	 0.7 	 Std 	 0.64 
	Monthly 	 Mean 	 0.02 	 0.35 	 1.7 	 1.59 	 -0.43 	 -0.37 	 Mean 	 0.5 
	 Std 	 2.05 	 1.01 	 2.12 	 3.12 	 3.26 	 1.33 	 Std 	 2.32 



			

3. Econometric modeling
The notation of this section is based in Frühwirth-Schnatter (2004) and Timmermann (2000). Let 
					xt
				 be the exchange rate (Peso/Dollar) and the stationary time series 
					yt=100(xt−xt−1)/xt−1
				 of daily/monthly growth rates. To model the dynamic of the 
growth rates for both data frequency, the following autoregressive 
models are suggested: First, a Markov Switching autoregressive model 
(MSAR), where the full set of parameters is state dependent, given by: 

				
ϕSt(L)yt=ζSt+σStεt  
(1)



			
Second, the specification suggested by Hamilton (1989)
 where the role of the hidden indicators are more involved since the 
difference respect to the mean of the process is switching (MSMAR): 

				
Φ(L)(yt−μSt)=σStεt  
(2)



			
Third, the linear autoregressive model (LAR): 

				
ϕ(L)yt=ζ+σεt  
(3)



			
where 
					εt(0,1);Φ(L)
				 is a polynomial of order p and L is the lag operator of the 
autoregressive parameters which are state dependent in model (1); the 
switching intercept 
					ζSt
				 which leads to a state dependent mean in model (1); the switching mean _S_t in model (2), and 
					σSt
				 captures the state dependent volatility due to the error term. The hidden indicator 
					St
				 of the states is assumed to follow a discrete order one 
Markov process, i.e., the transition probability from state k to state l
 is given by 
					ξkl=Pr(St=lt−1=k)
				 for all 
					t=1,...,T
				 and 
					k,l  ∈{1,…,K}
				 states. Let’s denote the augmented parameter set as 
					Ψ=(ψ,S)
				, wich includes 
					S=(S1,…,ST)
				 and 
					ψ=(ϕk,ζk,μk,σk,ξkl)
				, where the sub index k means the state dependent parameter.
It is important to note that, if 
					K=1
				 model (1) and (2) collapse to model (3). However, if 
					K>1
				 MSAR and MSMAR are not nested models. They have different 
moments, dynamics, and statistical properties. See Timmerman (2000) for a
 proof. Moreover is important to discuss the state-paths dynamics among 
model (1) and model (2). In the first, conditional on the hidden 
indicators, the likelihood leads to Kdifferent paths at every time 
period; and for the second, the paths are 
					(K1+p)
				 where p is the number of lags in the polynomial operator. Therefore, in both models the likelihood for all 
					t
				 is given by t to the power of the number of paths, which is 
not operable even in short time periods. The dependency of the hidden 
indicators on the states allows to capture long memory in the process as
 documented in Diebold and Inoue (2001). In
 particular, the model (2) leads to richer dynamics in short term since 
the lags of the state dependent mean, and this captures better an 
approximation of the long memory in the process.
To make operable the likelihood, approximations have been suggested at the literature: Hamilton (1989), Kim and Nelson (1998) and a particle filter in Bauwens et al (2014).
 They are based on the stationary ergodic properties of the Markov 
process of the hidden indicators. In this paper, for model (1) these 
approximations to estimate the marginal likelihood of the model are 
applied. Furthermore, the MSMAR model was not studied in Frühwirth-Schnatter (2004)
 since the problem of state dependency paths even in low finite memory 
of the hidden indicators. I extend their approach to account for that by
 applying the Hamilton’s filter approximation.
The
 mixture distributions given by Markov switching models are able to 
generate probability distributions with asymmetry and fat tails. Timmermann (2000)
 demonstrated that the introduction of Markovian dependence into the 
hidden indicators expands the scope for asymmetry and fat tails that can
 be generated by mixture modeling. This explains the relative success 
that these models have had in applications to financial and economic 
time series. The Markov switching models lead to an interesting feature 
that generates processes with 
					yt
				 and 
					yt2
				 being autocorrelated. In particular, from Proposition 2 in Timmermann (2000), even though the process 
					yt2
				 is uncorrelated conditional on knowing the state, autocorrelation in 
					yt2
				 enters through persistence of the states, and the marginal 
distribution has fat tails, as long as far away are the state dependent 
variances. Moreover, if high volatility states are followed by states 
with either high volatility or a mean parameter far away from the 
unconditional mean, this will tend to create fat tails and increase 
kurtosis.
In summary, there are 
					K(2p+1)
				 possible autoregressive specifications2
 to model the exchange growth rates (Peso/Dollar) in daily and monthly 
frequency. Thus, this paper attempts to find the best fit model 
conditional to data. For this, simulation Bayesian methods based on Frühwirth-Schnatter (2004)
 are applied and extended to account for the MSMAR model as mentioned 
before, see the next section about the estimation procedure. By the 
bridge sampling technique (Meng and Wong 1996),
 and the Markov Chain Monte Carlo (MCMC) simulation methods, is possible
 to estimate the marginal likelihood (ML) for each model i, i.e., 
					Pr(yi)
				. Therefore, the Bayes factor allows to compare the model 
					j
				 with the highest marginal likelihood against of model 
					i
				 as follows: 

				
BFi,j=Pr(yj)Pr(yi)=Pr(Mj)Pr(Mi)  




			
where 
					Pr(yj)
				 is the ML of data y conditioned to model 
					j
				, and 
					Pr(Mj)
				 is the probability of model 
					j
				 conditioned to data y. Note that there is no prior probability assigned to any model, i.e., 
					Pr(Mj)=Pr(Mi)
				. Therefore, it is possible to infer the model probability conditional on data from the ratio of ML. In Table 2, the guide of model selection suggested by Kass and Raftery (1995) is reported. Thus, the probabilities of the data conditioned to model 
					i
				 and 
					j
				 for different values of the for the Bayes factor in 
					log10
				 can be obtained. Let the model 
					j
				 leads to the highest marginal likelihood, if 
					log10(BFi,j)>3
				, there is positive evidence against of model 
					i
				 and this specification can be rejected. On the other hand, 
if the Bayes Factor is less or equal than three, both models represent 
the data with high probability. Therefore, we should be indifferent 
between choose one of them. 

				
Table 2. 
			
Bayes factor and model selection

	Bayes factor (log
 
 10
 )	Evidence against of the model i
	1 a 3 	 Not worth more than a bare mention 
	3 a 20 	 Positive 
	20 a 150 	 Strong 
	Más de 150 	 Very strong 

 Guide of model selection through the Bayes factor of Kass and Raftery (1995) 



			
It is important to mention, that the ARIMA 
models are mainly focused on the short-run properties of the data 
misleading the of long-run properties. The Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) models provide an alternative to 
ARIMA models allowing to exhibit stationary ARMA behavior after being 
fractionally differenced, Sowell (1992). However, Diebold and Inoue (2001)
 provide a theoretical explanation, and their simulation study 
demonstrate that when structural change or stochastic regime switching 
exists, they are related to long memory and are easily confused with it.
 Furthermore, they argue that long memory and regime switching are 
interchangeable concepts. In our paper, the ARFIMA modeling in Markov 
switching frameworks is omitted. However, this might be studied as 
follows: The parameter of the fractional difference operator can be 
treated as a random variable in a continuous finite space. It can be 
included in the Bayesian MCMC scheme of the next section by generating 
draws from a truncated density in an additional MCMC block sampler step.
 Alternatively, the dynamics of this parameter can be treated as a time 
varying parameter in a switching state space model. However, this issue 
and the Bayesian simulation methods of model comparison are left for 
future research.
3.1 Bayesian estimation procedure
The simulation of the ML to each autoregressive model is carried out based on Frühwirth-Schnatter (2004), further details and the Matlab code to estimate the marginal likelihood of the model (1) and (3) can be found in the work of Frühwirth-Schnatter (2006).
 To estimate the marginal likelihood of model (2) when the hidden 
indicators of the states are more involved, I proceed in a similar 
fashion as Frühwirth-Schnatter (2004), but 
applying the Hamilton’s filter and the collapsing technique of Kim and 
Nelson (1998) to reduce the number of paths to simulate the marginal 
likelihood. Given the ML estimation, the Bayes Factor for every possible
 combination of models can be obtained by the 
						log10
					 of the ratio. Finally, once the model has been chosen, a 
new restricted MCMC is carried out for the best fit to data 
model-specification. Restricted sampling Monte Carlo means that the 
identification restrictions for the state dependent parameters are 
imposed. That is, if the preferred autoregressive specification is a 
3-state model, a possible restrictions of the MCMC sampling scheme are: 
						σ12>σ22>σ32
					 and 
						μ1<μ2<μ3
					. The procedure of the restricted sampling MCMC is as follows: 
• For initial values of the hidden indicators of the states S and variances for the error term, sampling the parameters 
						ψ
					 conditional to data and 
						S
					 from the 
						p(ψ,S)
					. The autoregressive parameters are sampled from a 
multivariate normal, the variance of an inverted gamma, and the 
transition probabilities from a Dirichlet probability density function. 
•
 Apply the accepted rejected sampling to the last step by imposing the 
state dependent identification restrictions. That is, if the sampled 
parameters satisfy the restrictions save the sampled draws, otherwise 
keep with the previous one. 
• Given the 
parameters from the last step, sampling the hidden indicators of the 
states from the forward-backward-smoothing algorithm described in Frühwirth-Schnatter (2006). 
•
 Repeat all the steps with the draws as the initial values, 7,000 times 
discarding the first 2,000 to eliminate the dependency of the initial 
values. 
Given the restricted MCMC output, all 
the posterior sample moments for the parameters can be computed (e.g., 
the sample mean and standard deviation). Moreover, from the posterior 
mean, the hidden indicators of the states can be simulated, and the 
associated probabilities to every state for 
						t=1,...,T
					 are called the filtered and smoothed probabilities in the literature.

3.2 Issues in model selection
Testing
 the linear model versus a MS autoregressive model cannot be carried out
 by the likelihood ratio test because, under the null hypothesis that 
the linear model is true, the MS parameters are not identified. This is 
called the problem of nuisance parameters at the literature, see Andrews and Ploberger (1994), Hansen (1996)
 among others. Furthermore, the ratio test does not have an asymptotic 
chi-square distribution since the information matrix is singular. An 
optimal test that attempts to solve these issues is suggested in Carrasco et al. (2014).
 This test only requires estimating the model under the null hypothesis 
where the parameters are constant. However, this is not useful for 
testing among different MS heterogeneity (e.g., a two versus three 
states model, a MSAR model (1) against of MSMAR specification given by 
(2). Moreover, these tests are based on asymptotic properties. That is, 
they are only valid if there are enough number of observations in each 
state, but the likelihood regular optimal conditions could fail when 
there are few observations in some state (Frühwirth-Schnatter 2006).
From
 the last discussion, it is preferred to carry out a model selection 
based on the Bayesian approach. From this, the Bayes factor can always 
be estimated by simulation methods even if the MS parameters are not 
identified, and the number of observations is not large enough in some 
of the states. As it was mentioned, this model selection is based on 
simulate the ML for each model applying an unrestricted MCMC sampling 
scheme (that is, without imposing any prior parameter identification 
restriction). See Frühwirth-Schnatter (2004) and Bauwens et al. (2014) for the main references in univariate MS autoregressive and MS-GARCH models respectively. 


4. Results
In
 this section, the monthly and daily exchange growth rates (Peso/Dollar)
 from April 1995 to May 2018 are studied. The source of the data is the 
Central Bank of Mexico. First, the model selection provides evidence of 
MS frameworks in both data frequency. Second, the estimation and 
inference of the models with best fit to data are reported. Finally, in 
both frequency data, the forecasting exercise leads to lower prediction 
errors in-sample and out-of-sample inferences in MS modeling than those 
from linear specifications.
4.1 Model selection
In Table 3,
 for the monthly exchange growth rates (Peso/Dollar) the estimation of 
the ML based on the simulation Bayesian methods described in the last 
section, and the Bayes factor are reported. The Bayes factor was 
estimated related to the model with the highest ML marked in bold. The 
number of lags considered were one and two, see the footnote (1); and 
the number of states goes from one, which leads to the LAR model of equation (3), to two and three for the MSAR and MSMAR models, equations (1) and (2) respectively. 

					
Table 3. 
			
Marginal likelihood and Bayes factor (monthly data)

	 	LAR	MSAR	MSMAR	MSAR	MSMAR
	Lags 	 K=1 	 K=2 	 K=3 
	1	 -649.6833 	 -618.6278 	-618.1775	 -619.0034 	 -618.9273 
	2 	 -649.9278 	 -619.7635 	 -619.1190 	 -620.2166 	 -619.1119 
	1	 13.6828 	 0.1956 	 0.0000 	 0.3587 	 0.3257 
	2 	 13.7890 	 0.6888 	 0.4089 	 0.8856 	 0.4058 


 The first rows report the estimation of the ML by the bridge sampling 
technique. The last part of the table presents the Bayes factor related 
to the model with highest ML (marked in bold). 



				
According to the guide of Kass and Raftery in Table 2,
 there is positive evidence against of the linear models, thus they can 
be rejected. However, two and three states can represent the monthly 
growth rates data with high probability. This, because all the Bayes 
factor related to the highest ML (marked in bold) are less than three. 
Even though, the model with the highest ML is the specification given by
 MSMAR(1) with two states, a model with two lags is carried out to study
 the monthly data and the forecasting exercise. This, since both models 
have high support by the data, and to compare the results with the daily
 data where three states are preferred according with Table 4.
In
 the next table, the estimation of the ML by the bridge sampling 
technique and the Bayes factor of daily exchange growth rates are 
reported. From the guide of the Bayes factor, the MSAR model with three 
states is preferred. Evidence very strong against linear models are 
provided. Moreover, strong evidence against of two states models, and 
positive evidence against MSMAR specifications with three states were 
found. Finally, the three states MSAR models with one and two lags have 
high probability to represent the daily data. Therefore, two lags are 
considered to study the inference and forecasting of the daily exchange 
growth rates. 

					
Table 4. 
			
Marginal likelihood and Bayes factor (daily data)

	 	LAR	MSAR	MSMAR	MSAR	MSMAR
	Lags 	 K=1 	 K=2 	 K=3 
	1	 -5968.9631 	 -4919.7918 	 -4917.0458 	-4713.6011	 -4731.9395 
	2 	 -5970.8091 	 -4924.0953 	 -4919.0491 	 -4719.1882 	 -4732.2134 
	1	 >150 	 89.5475 	 88.3549 	 0.0000 	 7.9643 
	2 	 >150 	 91.4165 	 89.2249 	 2.4264 	 8.0832 


 The first rows report the estimation of the ML by the bridge sampling 
technique. The last part of the table, presents the Bayes factor related
 to the model with highest ML (marked in bold). 



				

4.2 Estimation and inference
Once
 the best models are chosen, the restricted MCMC algorithm described in 
the last section is carried out to estimate the models for different 
frequency data. In Table 5 the posterior moments of the process (sample mean and standard deviation as a measure of volatility) are presented3. That is, for each state, 
						St=1,..,K
					, the posterior mean for the mean and the volatility of the 
processes are estimated. The High Posterior Density Interval (HPDI) at 
the 95% is also reported in this table. This interval is the posterior 
draw for each parameter in the 2.5% and 97.5% position. This is 
equivalent to the percentiles in frequentist econometrics.
In
 this table, for the daily data, the states one and two have means close
 to zero (-0.0146 and 0.0456) with associated volatilities of 0.3651 and
 0.7333. However, all of these moments are enough different, see the 
HPDI. Therefore, these states are denoted as low and medium volatility 
regimens. Furthermore, in the third state, the mean is higher than the 
others (0.3790) characterized with the highest volatility (2.3305), but 
the persistence and the probability for each state are different as it 
will be shown later. On the other hand, in the monthly data, there are 
two different means of the process: the first growth rate mean (1.2681) 
and the second zero (that is, the HPDI at the 95% does not exclude zero 
in the first state). Finally, the volatility of the non-zero growth 
exchange rate is 4.5538 which is higher than the volatility of zero 
monthly mean (1.6077). 

					
Table 5. 
			
Posterior moments form the MCMC output

	Daily exchange growth rates	Monthly exchange growth rates
	State	Parameter	Mean	HPDI	State	Parameter	Mean	HPDI
	1 	 Mean 	 -0.0146 	 -0.0285 	 -0.0025 	1 	 Mean 	 0.0003 	 -0.4019 	 0.3885 
	 Volatility 	 0.3651 	 0.3508 	 0.3789 	 Volatility 	 1.6077 	 1.3007 	 1.9142 
	2 	 Mean 	 0.0456 	 0.0124 	 0.0798 	2 	 Mean 	 1.2681 	 0.3385 	 2.3372 
	 Volatility 	 0.7333 	 0.6949 	 0.7709 	 Volatility 	 4.5538 	 3.4707 	 6.3206 
	3 	 Mean 	 0.3790 	 0.0957 	 0.7176 	 
	 Volatility 	 2.3305 	 2.0171 	 2.7236 


 Mean and volatility of the process were estimated from the restricted 
MCMC output from the models: MSAR and MSMAR for daily and monthly data 
respectively. Both specifications with two autoregressive lags. 



				
In Table 6, the 
posterior mean of the transition matrices and the steady state 
probabilities are reported. The transition probability parameters 
provide important information about the state persistence, which is the 
transition probability that to be in state k in the current time-period 
and stay in the same state in the next period. Furthermore, from the 
transition matrix it is possible to estimate the marginal probability of
 each state. They are called the steady state probabilities at the 
literature.
The persistence of the daily data is 
as follows: the probability to be in high volatility and stay in the 
same state is 0.8515, the persistence of medium and low volatility are 
0.9588 and 0.9786 respectively. This means that the highest persistence 
is in the low volatility state. The percentage of times that this low 
volatility is present is around the 57% of the sample. However, only 3% 
of the time the process is in the high volatility state, and close to 
40% in medium volatility. In monthly data, the persistence of the high 
and low volatility are 0.6557 and 0.8964 respectively. They are not so 
high, which means it is likely that the states constantly change every 
month. The percentage of times that the high volatility with growth rate
 are present is around 23%, and close to 77% of the time in low 
volatility with zero mean. 

					
Table 6. 
			
Transition matrix and steady state probabilities

	Daily exchange growth rates	Monthly exchange growth rates
	TM	
										
											St=1
										
										
										
											St=2
										
										
										
											St=3
										
										SSP	TM	
										
											St=1
										
										
										
											St=2
										
										SSP
	
										
											St=1
										

										 0.9786 	 0.0209 	 0.0005 	 0.5702 	
										
											St=1
										

										 0.8964 	 0.1036 	 0.7686 
	
										
											St=2
										

										 0.0302 	 0.9588 	 0.0109 	 0.3986 	
										
											St=2
										

										 0.3443 	 0.6557 	 0.2314 
	
										
											St=3
										

										 0.0043 	 0.1442 	 0.8515 	 0.0312 	 

 Transition matrix (TP) and steady state probabilities (SSP) from the restricted MCMC output 



				
In the Figure 2 the smoothed probabilities for 
						t=1,...,T
					 are plotted with the growth rates of both data frequency. These probabilities sum one for all 
						t
					. Therefore, if the smoothed probabilities tend to one in the state 
						k
					 the exchange growth rate moves to this state. If 
probabilities decreases a change of the state is likely. In the top 
plots of this figure, the gray area corresponds to the smoothed 
probabilities for the three states of daily data. In the bottom plots, 
there are presented the two states of monthly data with their associated
 smoothed probabilities. 

					
[image: 2448-6795-rmef-14-02-203-gf2.jpg]
The
 smoothed probabilities were estimated by the posterior mean from the 
restricted MCMC output, by the forward-backward-smoothing algorithm 
based on Frühwirth-Schnatter (2006). 

Figure 2. 
		
Smoothed probabilities and exchange growth rates



				
The periods of high volatility of daily 
growth rates are well captured by the gray area of the smoothed 
probabilities. There are several days of high volatility in the years of
 1995, 2008, 2009, 2016 and 2017 and some other dates, which are the 
most volatile. This includes the sub-prime crisis times. The periods of 
medium and low volatility represented by the gray area are approximated 
to 39.86% and 57.02% respectively. They capture in an appropriate way 
the changes in the volatility. Notice that, from 2016 up to now the 
probability to be in any state is higher than in the rest of the sample,
 which leads to a market highly volatile with low persistence during the
 last two years.
In the case of monthly data, the
 area of high volatility is the 23.14%. The sub-prime times and some 
others are captured by these smoothed probabilities. However, the area 
on the low probability (76.86%) is greater but does not reach to one at 
any time. This means that, each month there is a probability that the 
low volatility goes to high. However, the high volatility state is 
present with high probability in the last two years. These bottom plots 
show the low persistence of the states as mentioned before from the 
transition matrix parameters of Table 6.
The
 smoothed probabilities plots are one of the most important features of 
MS modeling. There is always a probability to change to another state, 
then there is not a structural change. In models with structural breaks,
 it would not be possible to change to the any previous state again. 
This is a strong assumption which in general might not hold. Even more, 
the linear modeling assumes that there is only one state in the full 
sample (unless exogenous structural breaks are imposed).
The model specification in monthly data based on the Bayes factor criteria, coincides with Islas-Camargo et al. (2017)
 supporting a MS specification over the linear autoregressive model, who
 studied the efficiency in the forward exchange rate. However, in high 
frequency exchange rate (Peso/Dollar) data, the MS specification 
suggests three states instead of two. In that paper, it is argued that 
the likelihood ratio test leads to a MS framework with two states, but 
this test is not valid as it was mentioned before. Therefore, the number
 of states might be misspecified. Even though the sample of that work 
covered 2002 to the beginning of 2017, a three states model was 
supported by the data according with our results and Figure 2.
Finally, in Table 7
 the p-value in frequentist econometrics tests on the residuals are 
reported. These residuals were estimated from the posterior mean of the 
MCMC output to the full time series (All), and conditional to every 
state for each frequency of the data. That is, two states in monthly 
data and three for daily data. In monthly data, all the null hypothesis 
cannot be rejected, therefore residuals are not correlated, and no ARCH 
effects are present, which means that the MSMAR(2) with two states leads
 to white noise error term in each state and for the whole sample. 
However, in daily data the null hypothesis are rejected for the whole 
sample (All). But, conditional to every state, the MSAR(2) with two 
states leads to white noise error terms. 

					
Table 7. 
			
Residual test (p-value)

	 	Monthly residuals	Daily residuals
	Test	All	S_t=1	S_t=2	All	S_t=1	S_t=2	S_t=3
	Ljung-Box Q-test 	 0.3591 	 0.0564 	 0.9453 	 0.0000 	 0.9739 	 0.8770 	 0.7924 
	Ljung-Box Q-test 	 0.8060 	 0.5851 	 0.9771 	 0.0000 	 0.1022 	 0.4572 	 0.0020 
	Engle’s ARCH test 	 0.3731 	 0.5712 	 0.5134 	 0.0000 	 0.3547 	 0.5860 	 0.0678 


 Null hypothesis: The residuals are not autocorrelated, the square 
residuals are not autocorrelated, and no conditional heteroscedasticity 
in this order respectively. 



				

4.3 Exchange rate (Peso/Dollar) forecasting
There is a wide literature of forecasting in economic time series and the exchange rate data in MS frameworks from the works of Hamilton and Susmel (1994) and Engel (1994) respectively. However, the approach of Boot and Pick (2017)
 is applied in the present paper to forecasting the Mexican exchange 
rate (Peso/Dollar). This approach suggests forecasting in MS frameworks 
based on optimal weights for the full sample. Thus, the mean of the 
square forecasting error (MSFE) is compared with alternatives approaches
 including the linear autoregressive model inferences. In this exercise,
 the moments and forecasting of the exchange rate are compared among 
models chosen by the Bayes factor (i.e., the LAR(1), the MSAR(2) and 
MSMAR(2) models in daily and monthly growth rates respectively). To do 
this, the optimal forecasting in MS frameworks will be shown to performs
 better than linear models. This, because the MSFE in-sample are lower 
in switching frameworks. Finally, in the out-of-sample exercise three 
periods ahead are inferred. In both frequency data, MS frameworks leads 
to lower forecasting error than linear inferences.
It
 is well known that the s-periods ahead forecast, converge to the sample
 mean in the autoregressive linear model, and to the unconditional mean 
in MS frameworks. However, in MS models the states of the time series 
are uncertain and they should be inferred as well. Therefore, in this 
paper this is estimated in three ways: first, conditional on the states 
which leads to K different paths; and second, forecasting by taking a 
weighted average of the conditional paths with weights given by the 
filtered probabilities at 
						T+1
					, see Kim and Nelson (1999a) and Hamilton and Raj (2002). This approach is called the standard MS forecasting. The third approach is carried out according to Boot and Pick (2017).
They
 suggested and optimal forecasting approach in MS frameworks based on 
weights for the full sample. In general, the weights w are optimally 
chosen by minimizing the mean square forecast error (MSFE). Then the 
estimated filtered probabilities are replaced by general weights 
						wt
					 for the forecast 
						y^T+1=xT+1'β^(w)
					. This approach is called the optimal MS forecasting (Opt). 
That paper considered three different estimation of the weights based on
 the uncertainty about the hidden indicators of the states, but they 
demonstrated are asymptotically equivalent.
Therefore,
 to show that the in-sample inferences from MS frameworks perform better
 than linear modeling for both frequency exchange growth rate data, the 
Matlab code of Boot and Pick (2017) was applied to estimate the FSFE of the last 124 periods. In Table 8,
 the MSFE mean of the LAR, MS and optimal MS from three alternatives as 
mentioned before are reported. From this, in monthly data, all the means
 of the MSFE of MS modeling an optimal approaches are lower than the 
linear model (9.6974). On the other hand, in daily data, even though the
 difference are not so high like in monthly data. The mean of 
forecasting error from MS frameworks and two alternatives of the optimal
 weights (0.4292 and 0.4290), are also lower than the linear model 
(0.4333). Therefore, in both frequency exchange growth rates 
(Peso/Dollar) data, the in-sample forecasting mean for the last 124 
periods under MS models beats the linear mean error. To save space any 
statistical test about these differences were omitted, but they can be 
carried out as in Boot and Pick paper. 

					
Table. 
			
8. In-sample forecasting error

	Frequency/Method	LAR(1)	MS(2)	Opt (1) MS	Opt (2) MS	Opt (3) MS
	Monthly 	 9.6974 	 8.1926 	 8.1911 	 8.2625 	 8.2639 
	Daily 	 0.4333 	 0.4292 	 0.4292 	 0.4290 	 0.5166 

 Mean of the square forecast error (MSFE). The optimal forecasting is based on three estimation methods in Boot and Pick (2016) 



				
In Table 9, the out-of-sample forecasting error of the exchange rates in levels at 
						T+1
					 to 
						T+3
					 are estimated to every model. As mentioned before, 
different models and methods are considered: the linear, LAR(1); 
applying the optimal weights in every state; the MS forecasting with two
 and three states; and inferences conditioning on every state. The 
square forecasting error (SFE) at 
						T+s
					 with these approaches are reported as follows: from the MCMC output, the expected forecasting error i.e., 
						E[(xT+s−x^T+s)2]
					 of the posterior mean in levels of the exchange rates were estimated. To save space the HDPI were omitted. 

					
Table 9. 
			
Out-of-sample square forecasting error (SFE) at 
									T+s
								
							

	Date	 	Opt 1	Opt 2	Opt 3	LAR(1)	MS	MS(S_t=1)	MS(S_t=2)	MS(S_t=3)
	29/05/2018 	 T+1 	 0.15 	 0.15 	 0.14 	 0.15 	 0.15 	 0.15 	 0.14 	 0.07 
	30/05/2018 	 T+2 	 0.12 	 0.12 	 0.11 	 0.13 	 0.12 	 0.14 	 0.12 	0.03
	31/05/2018 	 T+3 	 0.36 	 0.36 	 0.34 	 0.37 	 0.36 	 0.39 	 0.35 	0.15
	Mean 	 0.21 	 0.21 	 0.20 	 0.22 	 0.21 	 0.23 	 0.20 	0.08
	05/2018 	 T+1 	 1.17 	 1.18 	 	 1.16 	 1.18 	 1.20 	0.94	 
	06/2018 	 T+2 	 2.00 	 1.98 	 1.94 	 1.97 	 2.01 	1.49
	07/2018 	 T+3 	 0.82 	 0.77 	 0.68 	 0.75 	 0.80 	0.03
	Mean 	 1.33 	 1.31 	 1.26 	 1.30 	 1.34 	0.82


 The out-of-sample SFE was estimated as the square of difference from 
the estimated nominal exchange rate to the real data. Daily data (first 
rows) by the MSAR(2) model with three states, and monthly data (last 
rows) by the MSMAR(2) and two states. Only one lag was considered in 
linear model LAR. This based on the highest value of the ML in Table 3 and Table 4. The minimum FSE is marked in bold. 



				
From this table, in daily data most of the 
MS methods beats the SFE of the linear model. The minimum SFE (marked in
 bold) are given by the MS forecasting error conditioning on the state 
three of high volatility. For the three periods ahead and the mean of 
the SFE this conditional forecasting is the minimum over all the methods
 and models. However, most of the optimal and MS forecasting errors are 
lower than the linear inferences, except the SFE of the state one with 
low volatility. In monthly data, only the SFE of the state of high 
volatility (marked in bold) is lower than the linear inferences in the 
three periods ahead. However, the linear model cannot be beaten by the 
optimal and the rest of MS frameworks in the out-of-sample forecasting 
error. The reason that, the optimal approaches and the rest of MS 
frameworks failed to provide lower out-of-sampling error might be 
explained by the low persistence of the states. From this exercise, 
there is always MS frameworks and methods that leads to lower 
forecasting errors in out-of-sample than the linear inferences at this 
particular sample period.
Finally in Table 10,
 the unconditional moments (mean and volatility) are reported for both 
frequency data and the MS modeling. This to compare the with the linear 
and the sample moments because the s-periods ahead converge to these 
moments. The unconditional moments in MS models are a weighted average 
of the state dependent conditional ones of Table 5, with weights given by the steady state probabilities in Table 6.
 As expected, the unconditional moments for the switching specifications
 are very close those of the LAR modeling and the true sample moments of
 the exchange growth rates. Furthermore, the three periods ahead 
exchange rates forecasting in levels (Peso/Dollar) are reported. That 
is, the LAR(1) model inferences against of those from the models chosen 
by the Bayes factor and methods that minimize the SFE of Table 9.
 From this table, it is important to note that the linear model 
sub-estimated the predicted level of the exchange rates in both 
frequency. This because, there is not any possible change of the state, 
different to the MS specification which considered this with some 
probability. In particular, in monthly data the linear inferences are 
lower and close to 19 pesos by dollar, and the real data is above of 19.
 In daily data, the linear inferences are also lower than the real data,
 but the MS inferences in the high volatility state are closer to the 
real exchange rates. 

					
Table. 
			
10. Moments of the LAR and the unconditional moments of the switching modeling

	Levels	Monthly	Daily
	Time	Real	LAR(1)	Forecast(*)	Real	LAR(1)	Forecast(*)
	T+1 	 19.49 	 18.32 	 18.55 	 19.75 	 19.60 	 19.68 
	T+2 	 20.31 	 18.37 	 18.82 	 19.73 	 19.60 	 19.76 
	T+3 	 19.12 	 18.44 	 19.08 	 19.98 	 19.61 	 19.83 
	Growth rates	Sample	LAR(1)	MSMAR(2)	Sample	LAR(1)	MSAR(2)
	Mean 	 0.44 	 0.41 	 0.29 	 0.02 	 0.02 	 0.02 
	Volatility 	 2.60 	 2.60 	 2.29 	 0.67 	 0.67 	 0.57 

 (*) means the forecasting level of exchange rate (Peso/Dollar) from the models and methods that minimize the FSE of Table 9. 



				
In summary, under an appropriated model 
selection according to the best adjusting to the data, in-sample and 
out-of-sample forecasting of the Mexican exchange rate (Peso/Dollar) in 
MS frameworks have a lower forecasting errors than those from linear 
modeling for this particular time period. In any case and frequency of 
the data, the MS frameworks cannot beaten the by the linear inferences. 


5. Conclusions
This
 paper studied the econometric modeling and forecasting of the nominal 
Mexican exchange growth rates (Peso/Dollar) from 1995 to 2018. By 
applying Bayesian simulation methods based on Frühwirth-Schnatter (2004),
 there were found the best-fit to data econometric autoregressive 
models. Furthermore, an exercise of in-sample and out-of-sample 
forecasting among the linear and non-linear models by introducing MS 
parameters were carried out.
For two frequencies 
of the exchange growth rates data (daily and monthly), it was found 
evidence of changes in the mean and volatility of the market. A three 
states autoregressive models with state dependent volatility in high 
frequency of the data is strongly supported by the sample. There are 
some periods of high volatility with growth rate mean besides of those 
in the sub-prime crisis in 2008-2009. Furthermore, there is always 
evidence of changes between low, medium and high volatility. Therefore, a
 structural changes in linear models for the Mexican exchange rate are 
not empirically supported. On the other hand, in low frequency data 
(monthly exchange growth rates), different means and volatilities are 
also found. However, the persistence of each state is not high. That is,
 changes in the monthly volatility are more likely than the high 
frequency data of the exchange growth rates. However, in the last two 
years, the high volatility state is present with high probability.
In
 the forecasting exercise, the MS autoregressive models lead to that the
 forecasting errors of the exchange growth rates are lower than those of
 the linear modeling in both frequency data, which is an issue of strong
 discussion in most of the empirical literature. In financial emerging 
markets, it is expected strong financial shocks and markets are subject 
to different volatile periods (e.g., changes in the mean and the 
volatility of the exchange growth rate). Therefore, there is always a 
probability that the process changes to another state. To do this, the 
optimal weighting approach of Boot and Pick (2017)
 was considered in MS frameworks. Furthermore, it is well known that 
periods ahead of forecasting in linear models, converge to the 
unconditional mean of the process which might lead to higher errors than
 MS model inferences if changes of the states are omitted. The results 
an methods, might be very useful to decision makers since our prediction
 of changes in volatilities might help to inference the risk in this 
market.
Moreover, independent of the frequency 
data, the Bayes Factor provided enough evidence that any linear 
autoregressive model with constant parameters over time is a wrong 
specification to study the Mexican exchange rate. Moreover, imposing 
exogenous structural breaks might not be a reliable assumption since 
volatility changes are present in different time-periods of the sample 
beside of those from the sub-prime crisis. This paper suggests that the 
dynamics and inference of this market are better adjusted with any 
time-varying parameters econometric model.
On the
 other hand, small data problems are very usual in emerging markets 
(e.g., to estimate large number of parameters with small time series or 
few observations in some state). But, it is important to note that the 
Bayesian approach is not based on asymptotic statistical properties. 
Then, the number of observations might not be a serious problem for 
inference. Furthermore, the model selection can be always carried out 
solving the nuisance parameters problem in the literature. Then, 
simulation methods might perform better in inferences than standard 
methods of frequentist econometrics. From this, under time-varying 
parameters models, Bayesian econometrics is a very useful tool to make 
more accurate estimation and inference.
This 
paper contributes in the literature in the exchange market in two 
features: an appropriated useful econometric tool based on the dynamics 
of the data to study changes in the mean and volatility as measure of 
risk in the market at different data frequency, and an empirical 
evidence of forecasting in financial markets characterized by suddenly 
volatile changes.
Finally, this study attempts to
 motivate that future research about financial issues of explanation of 
shocks and changes in volatility, co-movements in economic variables, 
determinants and inference in the Mexican exchange market, should be 
based on models with non-constant parameters over time. Therefore, we 
should be careful with the Mexican exchange rate econometric modeling 
(co-integration, unit root test, VAR model, GARCH and structural 
models). This, because the economic implications might be state 
dependent, and a misspecified econometric model might lead to different 
inferences that support the conclusions. Finally, model comparison and 
inference under GARCH and ARFIMA models in MS frameworks are left for 
future research.
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NOTES
 2The
 maximum number of lags considered is two since the number of paths in 
the MSMAR increases exponentially with the number of lags 
						
							(K1+p)
						
					. In previous version of the paper, eight lags in the model (1) 
were considered, but the Bayes factor provided evidence to only two lags
 as the best fit to data model.

 3All the posterior moments of equations (1) and (2) were omitted to save space.
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