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The objective of this research is to model the behavior of oil returns. The volatility of oil returns is described 

through a TGARCH process. Conditional probability jumps are incorporated through uniform, double 

exponential and normal jump intensity distributions. We found that the volatility of oil returns follows the 

stylized facts of leptokurtosis, leverage effect and volatility clustering. The abnormal information that causes the 

jumps, can cause another type of unexpected changes in the following period and the intensity of the jumps has 

a negative effect on the probability of jumps in the next period. The dynamic model proposed can be extended 

to other markets and to multivariate time series modeling considering the dependence among the markets’ 

returns. The main contribution of this work is the estimation of the conditional probability of jumps depending 

on the previous behavior leading to a better description of the stochastic dynamics of crude oil prices. This will 

be useful for making better decisions regarding oil as an underlying asset in derivatives or in the formulation of 

better public policies.  

JEL Classification: C10, C22, G13, Q4. 

Keywords: Oil prices, TGARCH with jumps, Conditional probability. 

Esta investigación modela el comportamiento de rendimientos del petróleo. La volatilidad de estos 

rendimientos se describe con un proceso TGARCH. La probabilidad de saltos condicionales se incorpora 

mediante distribuciones de intensidad de salto uniformes, doble exponencial y normal. Descubrimos que la 

volatilidad de estos rendimientos sigue los hechos estilizados de leptocurtosis, efecto de apalancamiento y 

agrupamiento de volatilidad. La información anormal que causa los saltos provoca otro tipo de cambios 

inesperados en el siguiente período y la intensidad de los saltos tiene un efecto negativo en la probabilidad de 

saltos en el siguiente período. El modelo dinámico propuesto puede extenderse a otros mercados y a modelos 

de series de tiempo multivariadas considerando la dependencia entre los rendimientos de los mercados. La 

principal contribución del trabajo es la estimación de la probabilidad condicional de saltos en función del 

comportamiento anterior que conduce a una mejor descripción de la dinámica estocástica de los precios del 

petróleo. Esto será útil para tomar mejores decisiones con respecto al petróleo como activo subyacente en 

derivados o en la formulación de mejores políticas públicas. 

Clasificación JEL: C10, C22, G13, Q4. 

Palabras clave: Precios del petróleo, TGARCH con saltos, Probabilidad condicional. 
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1. Introduction 
 

Oil, within the energy sector, is studied to understand and identify the dynamics of growth and 

economic development in countries. As a raw material or financial asset, oil is undoubtedly essential 

for many companies and developing economies that are vulnerable to its price variations. While oil-

importing economies are looking for low prices, the Organization of Petroleum Exporting Countries 

(OPEC) and other producers are trying to set prices and quantities to maximize their income. 

Therefore, knowledge of the dynamics of crude oil prices in the spot market or in the futures 

market plays an important role in supporting economic policy and decision-making processes that 

allow stronger coverage of crude oil prices in the financial markets of economies and/or companies. 

Most of the research that has been developed regarding oil prices dynamics assumes that oil prices 

follow an ongoing stochastic process. In general, they assume that the change in prices is smooth. 

Bashiri and Pires (2013) and Fan and Li (2015) present a review of the literature of oil price 

forecasting techniques. 

Commodity price modeling using continuous stochastic models and smooth behavior is 

presented in the works of Schwartz (1997), Schwartz and Smith (2000) and Baker et. al. (1998).  

Pindyck (1999) does so specifically for oil, coal, and natural gas. 

When working with returns of such assets, certain special characteristics have been 

observed, in particular that their probability distributions have wide tails. In addition, there may be 

discontinuities that affect the performance of the asset at any time, for example, the occurrence of a 

natural disaster or terrorist attack, the existence of unforeseen or abnormal information, all of which 

affects the prices of commodities. 

One of the first authors to study discontinuity behavior through diffusion processes is Merton 

(1976) who derives a formula similar to the Black-Scholes model for options considering 

discontinuities in share prices. Postali and Picheti (2006) consider that using geometric Brownian 

motion to describe price behavior is appropriate provided that the relevant structural changes 

consider discontinuities. By discretizing the continuous process, we find time series models 

describing situations in which wide tails and discontinuities occur due to abnormal information. 

We can use GARCH type models coupled with jump models to describe volatility for oil returns time 

series. 

Among the works that consider discontinuities in asset prices is the one done by Askari and 

Krichene (2008) in which they study the dynamics of oil prices between 2002 and 2006 using daily 

data modeling volatility with jumps. The authors find that the probability of higher prices is greater 

than the likelihood of them falling. Similarly, Lee et. al. (2010) use daily petroleum price data and 

develops a model based on structural changes where they break down variance into a transient and 

a permanent component. 

Wilmot and Mason (2013) study the trajectory of oil with data at different frequencies 

allowing the presence of jumps and therefore their study considers continuous behavior along with 

discontinuous. Li and Thompson (2010) apply GARCH models to oil prices, but compare different 

models in the average return. Narayan and Narayan (2007) work with volatility models employing 

subsamples which allow them to differentiate price behavior without using discontinuities. 
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More recently Bouri (2019) studies the jump behavior in the sovereign risks of major oil-

exporting countries and examines whether it is affected by jumps in the price and volatility of crude 

oil finding that the sovereign risks of oil-exporters are affected by abrupt movements in oil implied 

volatility, which points to a contagion effect. 

Charles et. al. (2017) analyze volatility models and their forecasting abilities and compare 

several GARCH-type models. 

The purpose of this work is to describe the behavior of oil prices using time series techniques 

with jumps intensities with three different distribution functions, and to assess its performance with 

out of sample forecast. Unlike previous jobs, the main contribution of this work is that we focus on 

the conditional probability of jumps (accumulated in the period) that is considered and estimated as 

an autoregressive process and explains that the probability of jumps depends on the previous 

behavior. GARCH models are used to describe the volatility clustering associated with volatility in oil 

returns. 

 

2. Time series with jumps 

 

To describe the behavior of the oil price trajectory, consider the following diffusion process: 

 
𝑑𝑃𝑡

𝑃𝑡
= 𝛼𝑑𝑡 + 𝜎𝑑𝑊𝑡     (1) 

 

with Pt the price of oil and 𝑊𝑡a geometric Brownian motion. When discretizing we have the 

following model in time series: 

 

𝑟𝑡 = 𝜇 + 𝜎𝜀𝑡      (2) 

 

with 𝑟𝑡 = log (
𝑃𝑡

𝑃𝑡−1
) (the difference in natural price logarithm) is the continuous return by 

period of oil. Conditional average 𝜇 = 𝛼 −
𝜎2

2
is the average oil return and volatility 𝜎 is the conditional 

standard deviation of oil returns. The term 𝜀𝑡  is the error we will assume has a normal distribution 

function with zero mean and variance one. In equation (2) the conditional mean and the conditional 

variance are constant, but to be more realistic the model we can make them depend on time. To the 

previous model, we can also include abnormal information that arrives in the period so the first 

equation in (2) may include a term indicating whether there were jumps and the intensity of those 

jumps. Returns are expressed by the following model: 

 

𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝜀𝑡 + 𝐽𝑡𝑦𝑡     (3) 

 

with 𝐽𝑡  that takes value from one if there were effects due to abnormal information (jumps) 

with total size or intensity 𝑦𝑡, and takes the value of zero if there weren't. In this case the sum of the 

abnormal effects during the period is considered. This implies that there may be jumps that are 

canceled in a day and therefore the intensity, 𝑦𝑡, from this day is null, even if 𝐽𝑡  takes value of one. The 

size of the jump 𝑦𝑡  is a random variable that indicates the jump over the return and in this work we 
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assume it can follow a uniform distribution (for comparison purposes), double exponential or 

normal. In this model we incorporate the conditional probability of autoregressive jumps as follows: 

 

𝑃(𝐽𝑡 = 1|𝛺𝑡−1) = 𝜆𝑡 = 𝑝0 + 𝑝1𝜆𝑡−1 + 𝑝2 (
𝑟𝑡−1−𝜇𝑡−1−𝐸(𝑦𝑡−1)

𝜎𝑦
)   (4) 

 

Where Ω𝑡  is the information set until time t. That is, the probability of jumps is conditioned 

on information in the period t-1, and depends on th probability of jumps in the previous period, as 

well as the size of the jumps in the previous period (if any) in a standardized manner. For the 

conditional mean t, can be considered an ARMA model, for example an AR(1) and for conditional 

variance 𝜎𝑡
2 a TGARCH model. 

 

3. Methodology 
 

To estimate (3), daily oil closing prices are taken and continuous returns are calculated by period: 

 

)log()log( 1−−= ttt PPr      (5) 

 

These data series are the continuous rate of growth in the spot oil market. An ARMA(p, q) 

process will be estimated to describe the conditional average behavior of the 𝜇𝑡: 

 

𝜇𝑡 = 𝜑0 + ∑ 𝜑𝑖𝑟𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗𝑢𝑡−𝑗

𝑞

𝑗=1
     (6) 

 

with 𝑢𝑡 = 𝜎𝑡𝜀𝑡. We suppose that t follows a normal distribution with zero mean and variance one. 

To estimate the initial orders p and q, the Box-Jenkins methodology is followed. A model of the ARCH 

family is used for conditional variance. These models were developed by Engle (1982) and 

generalized by Bollerslev (1986). The model to use is the one known as TGARCH(1,1) (Threshold 

Generalized Autoregressive Conditional Heteroskedasticity) introduced by Zakoian (1994) and by 

Glosten et al. (1993). 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽1𝜎𝑡−1
2 + 𝛾𝑢𝑡−1

2 𝐼𝑡    (7) 

 

where 𝐼𝑡 = {
1 𝑢𝑡−1 < 0
0 𝑢𝑡−1 ≥ 0

  is an indicator function. 

 

TGARCH dynamic specification allows asymmetric impacts on the current volatility of the 

time series. Good news, i.e., ut–1 > 0, have an impact equal to 𝛼1, and bad news, i.e., ut–1< 0, have an 

impact equal to 𝛼1 + 𝛾. 𝐼𝑓𝛾 ≠ 0, the news impact is asymmetric on the behavior of the time series; 

otherwise, the impact is symmetric. 

According to the above, the complete model for describing the behavior of oil returns consists 

of a conditional mean equation defined as an autoregressive process and an equation for volatility 
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(conditional standard deviation) defined as a TGARCH process and used to describe the dispersion 

of returns in logarithms (continuous). 

The inclusion of variance, as mentioned by Tsay (2005) makes it possible to describe certain 

characteristics of the price time series like formation of clusters (volatility is close in short periods) 

commented above; the wide tails or high probability of having large extreme returns that are 

measured by kurtosis, and the leverage effect, measured at (7) by the 𝛾 parameter and indicating the 

negative relationship between returns and volatility, i.e. volatility increases when returns decrease. 

Estimating the conditional probability parameters at (4) requires that the result be between zero and 

one so we use the following transformation: 

 

𝜆𝑡 = 𝛬 (𝑝0 + 𝑝1𝜆𝑡−1 + 𝑝2 (
𝑟𝑡−1−𝜇𝑡−1−𝐸(𝑦𝑡−1)

𝜎𝑦
))    (8) 

 

with Λ logistic transformation that ensures values between zero and one. 

Parameters are estimated using maximum likelihood numerical estimation methods. The estimate 

involves maximizing the likelihood function by finding consistent and invariant parameters with 

asymptotically normal distribution. 

The likelihood function is as follows: 

 

log𝐿(𝜃) = ∑ log ((1 − 𝜆𝑡)
1

√2𝜋𝜎𝑡
𝑒

−(𝑟𝑡−𝜇𝑡)2

2𝜎𝑡
2

+ 𝜆𝑡∫
1

√2𝜋𝜎𝑡
𝑒

−(𝑟𝑡−𝜇𝑡−𝑦𝑡)2

2𝜎𝑡
2

𝑓(𝑦𝑦)𝑑𝑦𝑡)

𝑇

𝑡=1

 (9) 

 

with {𝜃} the parameters set, yt the jump intensity and f(yt) its density function.  

The integral is over the domain of yt. For the latter, three possible probability distributions are 

considered: uniform, normal, and double exponential. 

The continuous uniform distribution considers two parameters a and b that indicate that the 

jump is limited to having an intensity between those two parameters and has the same probability of 

occurrence. This implies greater simplicity in the model but restricts it to the fact that there cannot 

be jumps with less intensity than a or greater intensity than b. 

The double exponential or Laplace distribution, used by Kou (2002) to incorporate price 

jumps and to develop a valuation model for option prices. The density function of the Laplace 

distribution is as follows: 

 

𝑓(𝑦) =
1

2𝜂
exp (−

|𝑦−𝑘|

𝜂
).    (10) 

 

This distribution can take any positive and negative value for jumps with a mean of k and a 

variance of 2𝜂2 and has wider tails than a normal distribution, i.e. there is a higher probability of 

extreme jumps compared to a normal distribution. 

The third proposal is the normal distribution with jumps mean 𝜃 and jumps variance 𝛿2 that 

is the jump intensity can take any positive and negative value with a mean of 𝜃 and a variance of𝛿2. 

Normal distribution is as follows: 
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𝑓(𝑦) =
1

√2𝜋𝛿
exp (−

(𝑦−𝜃)2

2𝛿2 ).    (11) 

 

4. Data and results 
 

The study data is based on daily closing prices collected from the US Energy Information 

Administration, WTI oil, and the price of BRENT oil in dollars per barrel for the period January 4, 

2010 to May 29, 2020. In order to continue with the analysis, it is necessary that the calculated 

returns, as (5), are stationary time series. Table 1 shows the Augmented Dickey-Fuller and Phillips-

Perron unit roots tests for WTI and BRENT oil natural logarithm price series and their differences, 

which come to be continuous returns as in (5). The probability (p-value) of the test is shown as well 

as the optimal lag considering the Schwarz information criterion (DFA) and optimal Newey-west 

bandwith (PP). 

It is found that the former have unitary roots but the latter does not. This means that oil 

logarithm prices are one-order integrated series and continuous returns of zero order integrated, i.e. 

stationary. 

 

Table 1. Augmented Dickey-Fuller (DFA) and Phillips-Perron (PP) tests for logarithmic prices 

(levels) and returns (first difference). 

  Levels First difference 

DFA Prob Lag Prob. Lag 

WTI 0.41995 4 0.00000 5 

BRENT 0.24809 26 0.00000 18 

PP Prob Bandwidth Prob. Bandwidth 

WTI 0.38007 18 0.00000 3 

BRENT 0.50663 28 0.00000 18 
Source: own elaboration based on data from the US Energy Information Administration 

 

Table 2 shows the descriptive statistics of stationary continuous returns. 

 

Table 2. Descriptive statistics of WTI and BRENT daily continuous returns. 

  WTI BRENT 

Mean -0.00031 -0.00031 

Std. Deviation 0.03135 0.02815 

Skewness -2.42783 -3.39870 

Kurtosis 110.70226 134.76295 

Jarque-Bera 1314407.70 1968518.50 

 p-value 0.00000 0.00000 

Correlation 0.65898 
Source: own elaboration based on data from the US Energy Information Administration 
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The Jarque-Bera test rejects, in both cases, the null hypothesis that oil returns are distributed 

as a normal one. This justifies the use of model (3) because, although the disturbances are assumed 

to be normal, by including the TGARCH model and the break term, the resulting returns are not 

normal and with wider tails as shown in the kurtosis estimate for both series. Similarly, skewness is 

positive demonstrating that there is a bias to the right side distribution and that, therefore, there is a 

probability of having positive extreme returns greater than the probability of having negative 

extreme returns. 

The correlation between the two returns is very high 65%, which establishes strong linear 

dependence between the two crude references. 

The Box-Jenkins methodology is used and the optimal p and q values in the conditional mean 

are null. This tells us that the estimated conditional mean is a constant with respect to time. The 

procedure is extended and TGARCH models are estimated for each oil return without considering the 

jump. The results of the TGARCH (1,1) estimate as in (7) are presented in Table 3. The estimation and 

p-value for the parameters of the mean equation (upper panel), volatility equation (second panel) 

are shown. 

 

Table 3. Results of the TGARCH model estimates for WTI (left panel) and BRENT (right panel) 

returns. 

  WTI   BRENT   

  Coeff. Prob. Coeff. Prob. 
f0 -0.000294 0.35729 -0.000433 0.14641 
a0 0.000004 0.00000 0.000002 0.00861 
a1 0.010565 0.02337 0.016068 0.00111 
g 0.100950 0.00000 0.081507 0.00000 
b 0.934974 0.00000 0.943447 0.00000 

Log L 6797.45 
7038.19 
7038.19 

Akaike -5.00549 -5.18290 

Q1(12) 5.186 0.951 19.941 0.068 

Q2(12) 14.201 0.288 18.387 0.104 
Source: own elaboration based on programs implemented in the Eviews software. 

 

Standardized residuals and squared standardized residuals have a white noise behavior 

verified by the respective correlograms. Table 3 presents Ljung-Box statistics as well as their order 

12 p-value for standardized residuals and squared standardized residuals, thus verifying the 

goodness of fit of the model for both WTI and BRENT return cases. The variance parameters are 

statistically positive, and for both cases the leverage effect measured by the 𝛾 parameter is confirmed. 

This parameter is also statistically positive and indicates that when there is a drop in returns, 

which may be due to market participants getting nervous, volatility increases. 

Figure 1 shows the volatility of oil returns obtained from TGARCH models where there are abrupt 

changes in some parts of the graph. 
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Figure 1. WTI and BRENT Return Volatility plots from TGARCH Models. 
Sourse: Own elaboration based on programs implemented in Eviews software 

 

One of the most important changes in crude oil volatility happened in 2014 when prices 

plummeted for much of the year due to several reasons ranging from geopolitical situations, changes 

in OPEC targets and overproduction of some countries like the United States, creating an oversupply 

thus pushing returns downwards. 

Another important change in crude oil volatility happened in the first months of 2020, 

possibly due to the covid-19 pandemic. 

These information shocks may be overestimating volatility and can be studied by 

incorporating the jumps into the TGARCH models estimated above. The results of estimating the 

parameters of the TGARCH(1,1) model incorporating jumps as in (3) and estimating the conditional 

probability of jumps for the three different intensity distribution functions are presented in Table 4. 

The estimation was carried out for the period from January 2010 to December 2019, leaving the 

period from January to May 2020 to evaluate the performance of the models. 
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WTI and BRENT Return Volatility plots from TGARCH Models 
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Table 4. Result of the estimations of the TGARCH model with uniform jump intensity distribution 

(left panel), double exponential (central panel) and normal (right panel). 

  Uniform Double exponential Normal 

  WTI   BRENT   WTI   BRENT   WTI   BRENT   

  Coeff. Prob. Coeff. Prob. Coeff. Prob. Coeff. Prob. Coeff. Prob. Coeff. Prob. 
f0 

0.00001 0.96758 0.00004 0.89089 0.00021 0.57058 -0.00026 0.42895 0.00034 0.28817 0.00021 0.52538 
a0 

0.00000 0.00041 0.00000 0.05146 0.00000 0.00446 0.00000 0.00267 0.00000 0.00346 0.00000 0.13314 
a1 

0.01757 0.00068 0.01385 0.00807 0.01990 0.00035 0.00660 0.09117 0.02069 0.00042 0.01513 0.00535 
g 

0.04246 0.00000 0.03829 0.00001 0.03227 0.00027 0.03596 0.00000 0.03816 0.00010 0.03444 0.00015 
b 

0.94565 0.00000 0.95629 0.00000 0.94476 0.00000 0.95682 0.00000 0.94180 0.00000 0.95588 0.00000 
a 

-0.08830 0.00000 -0.05347 0.00000                 
b 

0.09995 0.00000 0.04466 0.00000                 
k 

        -0.00099 0.62332 -0.00111 0.39600         
h 

        0.02103 0.00000 0.01560 0.00000         
q 

                -0.00807 0.12528 -0.00458 0.10359 
d 

                0.03533 0.00000 0.02374 0.00000 
p0 

-4.25494 0.00000 -3.21841 0.00000 -2.80850 0.00000 -2.62307 0.00000 -2.96720 0.00000 -2.59284 0.00000 
p1 

8.91548 0.45049 5.98170 0.00307 5.60382 0.00000 5.32392 0.00000 5.35857 0.27843 4.82819 0.00000 
p2 

-3.25191 0.05050 -2.12726 0.02304 -0.40136 0.01572 -0.23120 0.00072 -0.84545 0.05659 -0.67964 0.01998 

Log L 6761.06 6954.88 6769.97 6939.50 6764.44 6956.62 

Akaike -5.18315 -5.33196 -5.18999 -5.32015 -5.18575 -5.33330 

Q1(12) 6.417 0.894 15.604 0.156 5.809 0.925 15.384 0.166 5.319 0.946 15.915 0.195 

Q2(12) 13.861 0.310 17.249 0.140 13.934 0.305 18.135 0.112 7.142 0.848 10.241 0.595 

Source: own elaboration based on programs implemented in the Eviews software. 

 

The estimator and p-value are shown for the parameters of the mean equation (upper panel), 

the volatility equation (second panel), specific parameters of each jump distribution (third panel), 

and parameters of the conditional probability of jumps (fourth panel). 

Again, the goodness of fit of the model is done by verifying that the correlograms of the standardized 

residuals and the squared standardized residuals behave like white noise. Table 4 presents Ljung-

Box statistics as well as their order 12 p-value for standardized residuals and squared standardized 

residuals, thus verifying the goodness of fit of the model for each of the three returns models for WTI 

and BRENT. 

Static (one period forward) and dynamic predictions (several periods ahead) are made to 

verify the adjustment with a control sample from January 2010 to December, 2019 and a treatment 

on which predictions are made from January, 2019 to May 29, 2020. The results of estimating the 

equation 

 

Realized𝑡 = 𝑎 + 𝑏Forecasted𝑡 + 𝜀𝑡   (12) 
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is reported in Table 5. The joint null hypothesis test statistic that the constant is zero and the slope is 

one is presented for the simple regression between performed and estimated variance. In 

parentheses is the p-value. 

 

Table 5. Goodness-of-fit regression estimation for model predictions. 

  WTI BRENT 
  Static Dynamic Static Dynamic 

Uniform         

a 0.0010 0.0012 0.0001 0.0001 

b 1.0329 1.0358 1.0193 1.0241 

Ho: 2.6098 3.4375 1.5587 2.7217 

a=0, b=1 (0.2712) (0.1793) (0.4587) (0.2564) 

Double 
exponential         

a 0.0013 0.0013 0.0002 0.0002 

b 1.0539 1.0553 1.0641 1.0647 

Ho: 3.7615 3.8687 8.1632 8.2294 

a=0, b=1 (0.1525) (0.1445) (0.0169) (0.0163) 

Normal         

a 0.0012 0.0011 0.0002 0.0001 

b 1.0551 1.0654 1.0584 1.0666 

Ho: 4.3784 5.6565 8.5285 11.0339 

a=0, b=1 (0.1120) (0.0591) (0.0141) (0.0040) 
Source: own elaboration based on programs implemented in the Eviews software. 

 

Squared demeaned oil returns are considered for realized data. As predicted data, the 

conditional variance prediction for each model is taken. 

The results show that for both static and dynamic predictions horizon, the Uniform and 

Double exponential models are in a good fit, since the constant in the regression model cannot be 

rejected as zero and slope one. For dynamic prediction normal model, the null hypothesis that the 

constant is zero and the slope one is rejected. 

The mean square prediction error (MSPE) and the mean absolute prediction error (MAPE) 

calculated as follows: are also reported in Table 6. 

 

MSPE = √
1

𝑇
∑ (Forecasted𝑡 − Realized𝑡)2𝑇

𝑡=1     (13) 

 

MAPE =
1

𝑇
∑ |Forecasted𝑡 − Realized𝑡|𝑇

𝑡=1     (14) 
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Table 6. Mean square prediction error (MSPE) and mean absolute prediction error (MAPE). 

  WTI BRENT 
  Static Dynamic Static Dynamic 

Uniform         

MSPE 0.014702 0.014444 0.007983 0.007512 

MAPE 0.007262 0.007254 0.003880 0.003526 

Double 
exponential         

MSPE 0.018243 0.018331 0.011219 0.011284 

MAPE 0.009010 0.009047 0.005065 0.005102 

Normal         

MSPE 0.017121 0.017065 0.010103 0.010079 

MAPE 0.008409 0.008429 0.004492 0.004528 
Source: own elaboration based on programs implemented in the Eviews software. 

 

These results show that in the MSPE case, the model with the lowest prediction error for WTI 

and BRENT is the simplest with a uniform jump distribution, followed by the model with a normal 

distribution.  In the case of HMAE, the results are similar. 

According to the logarithm measurements of the likelihood function, the model with double 

exponential jump distribution function is best for WTI and the normal jump distribution model is 

best for BRENT followed by uniform distribution. 

It is noted that the coefficients of the conditional probability equation are significant in all 

cases except for the p1 coefficient (autoregressive part) of the uniform and double exponential 

models for WTI returns, this tells us that the conditional probability of jumps, in general, has an 

autoregressive positive behavior, then the probability of jumps has a positive effect on the probability 

of jumps in the next period, i.e. there are elements of a possible discontinuity in price volatility 

compared to the previous period and may follow or cause other unexpected rapid changes. The p2 

parameter is negative, therefore the intensity of the jump in the previous period has a negative effect 

on the probability of jumping this tells us that abnormal information in previous periods has already 

been incorporated into crude oil prices. 

Figure 2 shows the conditional jump probability plots for WTI (left) and BRENT (right) with 

uniform (top), double exponential (center), and normal (bottom) jump distribution functions. 

 

 

 
 

FIGURE 2

Source: own elaboration based on programs implemented in the Eviews software.
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Figure 2.  

Source: own elaboration based on programs implemented in the Eviews software. 

 

Figure 2 shows an increase in conditional probability, regardless of crude oil price volatility. 

This increase in probability, due to abnormal information, began with a drop in price in the last half 

of 2014. Between June 2014 and January 2015, crude oil prices fell by more than 50%, related to 

unexpected growth in U.S. oil production, as well as increased production in Russia and Canada. For 

the following months, conditional probabilities follow average behavior until January 2016 where 

they fall, this tells us that markets have incorporated that abnormal information and volatility as a 

measure of dispersion and risk is on track. Causes of these declines in late 2015 and early 2016 are 

the economic slowdown, at the time, of the Chinese economy, as well as fractures among OPEC 

members, Iran's oversupply due to the lifting of economic sanctions and again, overproduction in the 

United States and, the strength of the dollar.  

On the other hand, the conditional probability of jumps from 2016 is low and volatility 

continues its normal course in the market. 

 

5. Conclusions 
 

Today, the price of oil has a significant effect on the economic development of countries and 

companies themselves. Understanding the dynamics of its behavior is then fundamental, mainly for 

many economies and companies that are vulnerable to price hikes and declines. Therefore, 

developing a better way to describe its stochastic behavior will enable the formulation of better 

public policies. 

Describing the stochastic dynamics of crude oil prices, in addition to its effect as a raw 

material, will also help in making better decisions by using it as an underlying asset in financial 

markets through investment instruments such as derivatives.  

FIGURE 2

Source: own elaboration based on programs implemented in the Eviews software.
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Some of the typical characteristics of financial asset returns are also valid for oil returns. The 

distribution of oil price returns has leptokurtosis, i.e. wide tails, which means that there is a greater 

chance of extreme returns, whether positive or negative. It is also presented the leverage effect that 

occurs when prices go down and volatility in oil returns increases. One more feature is the volatility 

clustering in which volatility is grouped, if there is high volatility one day there will be similar 

volatility the next day. These features are described with TGARCH models. But when prices are 

exposed to abnormal information, jumps arise, which causes the volatility at that time not to be 

grouped and a greater variation occur, causing the tails of the returns distributions to be even wider. 

In this work, we investigate the role played by volatile oil returns and unexpected rapid changes. Our 

results, based on daily oil price data, support the inclusion of TGARCH models coupled with jumps. 

The main contribution of this work relies in adding the conditional probability of jumps which we 

modeled as an autoregressive behavior. It was found that the probability of conditional jump depends 

on the probability of jump in the previous period and depending on it in the previous period and the 

size of the jumps in the previous period.  The effect of the probability of jumps in the previous period 

on the current one is positive indicating that there are elements of a possible discontinuity in price 

volatility compared to the previous period; abnormal information, if it existed, can follow or cause 

other unexpected rapid changes. The effect of the size of jumps in the previous period on the current 

conditional probability is negative showing that the intensity of the jump in the previous period has 

a negative effect on the probability of jump, this means that abnormal information in the previous 

periods has already been incorporated into crude oil prices for the following periods. 

Finally, we must emphasize that other studies seem necessary to understand oil movements 

in developing economies. Not only for oil-exporting economies but also for oil importers, these 

studies may be relevant. In particular, we believe that such studies should focus on the relationship 

between the price of oil and other macroeconomic variables and estimate the behavior with bivariate 

distributions and continue with the time series models of the ARCH/GARCH family or models of 

stochastic volatility, but incorporating the possibility of jumps. 
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