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This paper aims to provide a methodology to construct parametrically the Efficient Frontier (EF) of Power 

Generation Portfolio (PGP). The methodology works as follows. First, we obtain two sets of the shares of the 

assets: one that guarantee the maximal expected return on the PGP; and another that guarantee the minimal 

risk of the PGP. The EF corresponds to the parametric equation of the risk-return profiles from the minimal risk 

to the maximal expected return of the PGP. We apply our methodology to replicate the results from three existing 

papers. The present methodology allows to and different and more coherent results than those obtained in the 

original papers. The analysis suggests that there are optimal investment alternatives that have been denied by 

previous analysis. This fact creates a bias in the design of investment policies in electricity generation. One 

limitation of the paper is that the analysis relies on the assumption that the covariances of the returns of the 

different assets is zero. This assumption leads to gains in tractability, clarity, and in the scope of the methodology 

formulated. 

JEL Classification: D81, G11, Q40, Q49 

Keywords: Portfolio, Power Generation, Efficient Frontier, Risk, Return. 

El objetivo de este artículo es proporcionar una metodología para construir, paramétricamente, la frontera 

eficiente (EF, por sus siglas en inglés) de portafolios de generación de energía (PGP, por sus siglas en inglés). La 

metodología opera de la siguiente manera. Primero, obtenemos dos conjuntos de las participaciones de los 

activos: uno que garantiza el máximo rendimiento del PGP; y otro que garantiza el riesgo mínimo del PGP. La EF 

corresponde a la ecuación paramétrica de los perfiles de riesgo-rendimiento, desde el riesgo mínimo hasta el 

máximo rendimiento esperado del PGP. La metodología propuesta se aplica para replicar los resultados de tres 

artículos existentes. La presente metodología permite encontrar resultados diferentes y más coherentes que los 

obtenidos en los documentos originales. El análisis sugiere que existen alternativas de inversión óptimas que 

han sido negadas por análisis previos. Este hecho crea un sesgo en el diseño de políticas de inversión en la 

generación de electricidad. Una limitante del trabajo es que el análisis se basa en el supuesto de que las 

covarianzas de los rendimientos de los diferentes activos son cero. Este supuesto implica ganancias en cuanto 

al manejo, la claridad y en el alcance de la metodología formulada. 

Clasificación JEL: D81, G11, Q40, Q49 

Palabras clave: Portafolio, generación de energía, frontera eficiente, riesgo, rendimiento. 
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1. Introduction

Power generation is subject to different sources of uncertainty (e.g., changes in fuel and electricity prices,
changes in the cost of CO2 emissions, and changes in the interest rate). Therefore, uncertainty exerts a direct
impact on the risk-return profiles of the generation of different technologies. In this regard, the Portfolio
Theory, developed by Markowitz (1952), has been extensively used to design plans for power generation
that reduce risk and increase returns through diversification (see DeLlano-Paz et al. (2017), for a review).
However, existing papers do not provide a description on how the authors construct the Efficient Frontier
(EF) of the Power Generation Portfolio (PGP) analyzed (e.g., Perea González and Zavaleta Vazquez (2020),
Gómez-Ríos and Juárez-Luna (2019), Costa et al. (2017), Pinheiro Neto et al. (2017), Adams and Jamasb
(2016), Jain et al. (2014), Cunha and Ferreira (2014), Francés et al. (2013), Losekann et al. (2013), Arnesano
et al. (2012), Bhattacharya and Kojima (2012) Allan et al. (2011), Delarue et al. (2011), Roques et al. (2010),
Vithayasrichareon et al. (2010a), Vithayasrichareon et al. (2010b), Roques et al. (2008), Roques (2006), and
Awerbuch and Berger (2003)). The construction of the EF, performed mostly by simulation, remains as a
black box.

In the present paper, we aim to open such a black box by providing a detailed methodology for the
parametric construction of the EF of PGP of up to five assets.2 Following the existing literature, in the
present analysis the EF refers to the set of the PGP that maximize their expected returns for a given level of
risk. That is, the expected return of an efficient PGP can be increased only by increasing its risk (Awerbuch
and Berger (2003)). The present methodology could also be applied to PGP based on the Levelized Cost of
Electricity (LCOE). In such a case, the EF would be a set of PGP that can yield the lowest expected LCOE
at given levels of expected risk (Jansen et al. (2006)).

The analysis relies on the fact that the risk of the PGP is a convex function of the shares of the different
assets. The methodology works as follows: first, obtain the shares of the assets that guarantee the maximal
expected return on the PGP. Then, obtain the shares of the assets that guarantee the minimal risk of the
PGP. We then formulate the risk of the efficient generation portfolios as a parametric equation of the shares
of the assets. Finally, the EF corresponds to the parametric equation of the risk-return profiles from the
minimal risk of the PGP to the maximal expected return of the PGP.

The majority of the existing literature on energy portfolios follows a two-step methodology proposed by
Roques et al. (2008). In the first step, the distribution of the returns is simulated by applying Monte Carlo
simulation or real options theory. In the second step, the portfolio theory is applied to simulated data to find
the optimal generation portfolios. In this paper we focus on the second step of such a methodology.

To exemplify the advantages and the scope of the methodology, we apply it to replicating and extending
the existing results from the following three papers: Roques et al. (2008), Jain et al. (2014), and Roques et
al. (2010). Among the main results, we have the following:

Roques et al. (2008) analyze portfolios of three technologies: CyCle gas turbine (CCGT), coal, and the
nuclear plant. These authors conduct the analysis with pairs of technologies under three scenarios as follows:
a) no correlation among the prices of electricity, fuel and CO2; 2) there are correlations among the prices of
electricity, fuel and CO2, and 3) investors can secure a long-term power purchase agreement. We replicate
the results of the second scenario. Our results contradict the following conclusion of Roques et al. (2008):
"the optimal portfolio for an investor in this case study is to invest only in CCGTs, as any other portfolio
would both reduce returns and increase risk."We find efficient portfolios that assign to CCGT a share less
than 100 %. Actually, the efficient portfolio of minimal risk and also minimal Expected Net Present Value
(ENPV) has the following shares: CCGT 53,7 %, nuclear 20,5 %, and coal 25,8 %.

2Depending on the context, the assets could be technoologies, reactors, or wind production of countries.
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Jain et al. (2014) analyze portfolios of four types of nuclear reactors: 1) Generic Gen III type Light Water
Reactor (LWR); 2) Fast Reactors (FR); 3) High Temperature Reactor (HTR), and 4) Super Critical Water
Reactor (SCWR). The analysis was conducted under budget constraint and capacity constraint.3 We replicate
the results of the case with budget constraint. The EF we obtain differs considerably from the one obtained
by Jain et al. (2014). We find that the portfolio of minimal risk and lower expected return has the following
shares: Gen III 18 %, HTR 26 %, SCWR 25 %, and FR 31 %. This result contradicts the following conclusion
of Jain et al. (2014): .an investor who wants to minimize the uncertainty of returns and is willing to take a
lower expected return in order to do so,will choose a portfolio with more Gen IV type reactors [FR 56 % and
HTR 35 %]."

Roques et al. (2010) analyze cross-country portfolios of joint wind production of five European countries
(Austria, Denmark, France, Germany, and Spain). The authors utilize two objective functions to define
optimal cross-countries wind power portfolios: i) optimizing wind-power output, and ii) maximizing wind-
power contribution to system reliability.4 We replicate the results of the first objective function. Our results
are considerably different than the ones obtained by Roques et al. (2010). For instance, we find that the
efficient portfolio that reaches a Wind Portfolio Capacity Factor (WPCF) of 0,2318 allocates the following
weights to the five countries: Spain 30 %, Germany 8 %, Austria 5 %, France 7 %, and Denmark 50 %. On
the other hand, Roques et al. (2010) find that, for the same WPCF level, the efficient portfolio allocates the
following weights to the five countries: Spain 54 %, Germany 0 %, Austria 6 %, France 10 %, and Denmark
31 %. Differences are noteworthy in the weights received by Denmark, Spain, and Germany.

The present methodology has remarkable advantages: 1) it allows to conduct analysis with up to five
assets together; 2) it allows to know the shares of the assets for any risk-return profile; 3) the EF is limited by
a maximum allowed risk of the PGP; 4) it provides more coherent results than those obtained in the existing
literature; 5) it points out that there are optimal investment alternatives that have been denied by previous
analysis, and 6) it avoids biases in the design of investment policies in electricity generation. Therefore, the
parametric formulation of the EF of the PGP constitutes a powerful tool for both power generation policy-
makers and large power companies (in liberalized markets). In addition, the present methodology could be
extended to analyze portfolios of more than five asses.

The paper also states that the so-called "portfolio effectresults from the fact that the risk of the PGP is
a convex function of the shares of the different assets.

The whole analysis relies on the assumption that the covariances of the returns of the different assets
are zero. This strong assumption allows gains in tractability, clarity, and in the scope of the methodology
formulated.

To the best of our knowledge, this is the first effort to provide a detailed methodology for the parametric
construction of the EF of PGP. It is noteworthy that the present parametric formulation of the EF of PGP
could be applied to portfolios based on assets different from those of power-generation technologies.5

The paper is organized as follows: in Section 2, we present the preliminaries; Section 3 presents PGP of
2 and 3 technologies, replicates the results obtained by Roques et al. (2008), and provides the proof of the
"portfolio effect."Section 4 presents PGP of 4 nuclear reactors and replicates the results obtained by Jain et
al. (2014). Section 5 presents cross-country PGP of 5 countries and replicates the results obtained by Roques
et al. (2010). Section 6 contains the final remarks and conclusions. The appendix contains the formal proofs.

3See Jain et al. (2014) for the details of the different reactors and the different constraints.
4See Roques et al. (2010) for the details of the different objective functions.
5For instance, it could be employed to analize portfolios of five electricity suppliers as those studied by Perea González and

Zavaleta Vazquez (2020).
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2. Preliminaries

We apply the Portfolio Theory developed by Markowitz (1952) to find the efficient power-generation mix:
the return of the generation mix can be increased only by increasing its risk. As customary, risk is measured
by the Standard Deviation (SD) of the returns. Formally, let Xi be the random variable that represents the
return of asset i and let Y be a random variable describing the return of the PGP, which is defined as follows:

Y =
∑n
i=1 αiXi, with

∑n
i=1 αi = 1. (1)

Where αi ∈ [0, 1] represents the share of asset i. Following result provides the basic tools for the analysis.
Lemma 1 Let Xi be a random variable that represents the return of asset i with mean µi and variance

σ2
i . Where αi ∈ [0, 1] is the the share of asset i = 1, 2, . . . , n. Let the return of the PGP be represented by the

random variable Y =
∑n
i=1 αiXi with

∑n
i=1 αi = 1. Then

E (Y ) =
∑n
i=1 αiE (Xi) ,

µY =
∑n
i=1 αiµi.

(2)

and
SD (Y ) =

√
E [Y − µY ]

2,

σY =
√∑n

i=1 α
2
iσ

2
i +

∑∑
i<j αiαjσi,j .

(3)

where the double summation extends to any values i and j , from 1 to n, such that i < j. In addition, σi,j =

E [(Xi − µi) (Xj − µj)] is the covariance of the returns of assets i and j.
See pp. 158, Freund et al. (2000).
The first result of Lemma 1 indicates that the expected return of the PGP is a convex sum of the expected

returns of the different assets. Following corollary summarizes such a fact:
Corollary 1 Assume that assets are ordered according to their expected return, µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥

µn. Then, it holds that µ1 ≥ µY ≥ µn.
Second result of Lemma 1 indicates that the risk of the PGP depends on two facts of the different assets,

their shares and the covariances of their returns. The risk of the PGP reduces when the covariances among
the returns of the assets are negative. The risk of the PGP increases when the covariances among the returns
of the assets are positive.6 The existing literature reports that, regardless of the variable used to construct the
PGP (NPV, LCOE, capacity factor, or installed capacity), the covariances amongst the different assets have
an absolute value considerably less than one (e.g., Perea González and Zavaleta Vazquez (2020), Pinheiro
Neto et al. (2017), Adams and Jamasb (2016), Cunha and Ferreira (2014), Roques et al. (2010), and Roques
et al. (2008)). As the shares of the assets have values less than one, we expect the term

∑∑
i<j αiαjσi,j to

be significantly smaller than the term
∑n
i=1 α

2
iσ

2
i in the risk of the PGP. This fact is particularly true in two

cases: a) when the returns of the PGP are given by the NPVs of the different assets, and b) PGP are based
on LCOE of the different assets. Both NPV and LCOE are given in million of dollars or pounds. Therefore,
for the present analysis, we assume that the covariances among the different assets is zero, that is, σi,j = 0,
for any values i and j , from 1 to n, such that i < j. Certainly, this assumption leads to a loss in precision in
calculating the minimal risk of the PGP. However, such loss is compensated by gains in tractability, clarity,
and in the scope of the methodology formulated.

Lemma 1 and Corollary 1 provide the tools to construct the EF of the PGP parametrically. The metho-
dology works as follows:

6Roques (2006) shows efficient frontier of PGP of CCGT- nuclear for various degrees of hypotetical returns correlation.
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1) Rank the assets according to their expected return, µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn. Then, the maximal
expected return of the PGP is reached when α1 = 1 and αi = 0 for i = 2, ..., n.

2) Obtain the shares of the assets, αi, that guarantee the minimal risk of the PGP. To do this, we solve the
following problem:

mı́n
αi

σY =
√∑n

i=1 α
2
iσ

2
i

subject to:
∑n
i=1 αi = 1, αi ≥ 0.

(4)

3) Formulate the risk of the efficient generation portfolios as a parametric equation of the shares of the
assets.

4) Finally, the EF corresponds to the parametric equation of the risk-return profiles from the minimal risk
of the PGP to the maximal expected return of the PGP.7

Worth noting that, in many cases the EF is not allowed to reach the maximal expected return of the PGP
as it is very risky. Under this scenario, we also need to define a maximal allowed risk of the PGP, α1 < 1,
and obtain the corresponding shares of the assets and expected return. In this case the EF corresponds to
the parametric equation of the risk-return profiles from the minimal risk of the PGP to the maximal allowed
risk of the PGP

Now we have all the building blocks to provide a parametric formulation of the EF of PGP. We start with
the portfolios of two technologies.

3. Optimal portfolios for electricity generators in the UK electricity
market

In this section we replicate the results obtained by Roques et al. (2008). The authors apply portfolio theory
to identify the portfolios that maximize the returns of private investors for given risk levels in the UK
electricity market. The authors use Monte Carlo simulation to compute the distribution of returns and their
correlations. Three technologies are considered: CyCle gas turbine (CCGT), coal, and the nuclear plant.
Instead of performing the analysis with the three technologies, these authors work with pairs of plants under
three scenarios: 1) no correlation among electricity, fuel and CO2 prices; 2) there are correlations between
electricity, fuel and CO2 prices, and 3) investors can secure a long-term power purchase agreement.

We replicate the results of the second scenario in which there are correlations among electricity, fuel,
and CO2 prices. Due to expositional motives, we conduct the analysis in two steps. First, as Roques et al.
(2008) do, we find the efficient portfolios of two technologies: CCGT and coal. Second, we analyze portfolios
including those of the three technologies: CCGT, coal and nuclear.

Data is taken from Roques et al. (2008), Table 4, 2nd scenario (with correlations), page 1839. The returns
and risk of the different generation technologies are given respectively by the ENPV and the SD of the ENPV.
The corresponding ENPV and variance of CCGT (cc), Nuclear (nu) and Coal (co) are: µcc = 139, µnu = −43,
µco = −73, σ2

cc = (233)
2

= 54289, σ2
nu = (377)

2
= 142129, and σ2

co = (336)
2

= 112900.
We proceed to analyze PGP of two technologies.

7When the PGP is based on LCOE, the ranking of the expected LCOE is as follows: µ1 ≤ µ2 ≤ · · · ≤ µn−1 ≤ µn. In this
case, the EF corresponds to the parametric equation of the risk-cost profiles from the minimal risk of the PGP to the minimal
expected LCOE of the PGP.

https://doi.org/10.21919/remef.v16i1.447
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3.1. Portfolios of two technologies

The risk of the PGP depends on the shares of technologies 1 and 2. The following result provides the
shares of technologies 1 and 2 that guarantee the minimal risk of the PGP.

Proposition 1 (Minimal risk of PGP of two technologies) From expression (4), the risk of a PGP

of two technologies is given by σY =
√∑2

i=1 α
2
iσ

2
i . Assume that the expected return of technology 1 is the

least risky. For σ1,2 = 0, αi ∈ [0, 1] for i = 1, 2, and α1 + α2 = 1, it holds that

a) The risk of the PGP, given by σY , reaches its global minimum at(
α∗1
α∗2

)
= 1

σ2
1+σ

2
2

(
σ2
2

σ2
1

)
,

b) The minimal risk of the PGP is

σ∗Y =
√

(σ2
1σ

2
2) / (σ2

1 + σ2
2) < σ1.

See appendix.
The following result provides the parametric formulation of the EF of PGP of two technologies.

Proposition 2 (EF of PGP of two technologies) Let σY =
√∑2

i=1 α
2
iσ

2
i be the risk of the PGP.

Assume that µ1 ≥ µ2, thus, the following holds:

a) The risk of the efficient portfolios is obtained by the shares of technologies 1 and 2, given by the following
parametric equation: (

α1

α2

)
=

(
α

1− α

)
,

where parameter α is such that α∗1 ≤ α ≤ αdf ≤ 1. α∗1 guarantees the minimal risk of the PGP. While
αdf guarantees the maximal allowed risk of the PGP.

b) The risk of the PGP in the EF is given by σY (α) =
√
α2σ2

1 + (1− α)
2
σ2
2 , for α

∗
1 ≤ α ≤ αdf . Note that

σ
(
αdf
)
≤ σ1.

c) The maximal expected return for each corresponding level of risk is given by µY (α) = αµ1 + (1− α)µ2,
for α∗1 ≤ α ≤ αdf . Note that µ

(
αdf
)
≤ µ1.

See appendix.
We now have the theoretical tools to analyze the PGP of CCGT and Coal.

3.1.1. Efficient portfolios of CCGT-Coal

Following Proposition 2, CCGT corresponds to technology 1 and Coal to technology 2. Then, from Pro-
position 1, the shares of the technologies that ensure the minimal risk of the PGP are

(α∗cc, α
∗
co) = (0,67528, 0,32472) .

The minimal risk reached by this PGP is σ∗Y = 191.47. And the maximal ENPV for such risk is µY = 70,159.
Note that Roques et al. (2008) do not find the minimal risk of the PGP, the shares of the technologies that
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guarantee such a risk, neither these authors find the corresponding ENPV. They only plot the EF of the
PGP.8

From Proposition 2, the risk of the efficient portfolios is obtained by the shares of technologies 1 and 2,
given by the following parametric equation:(

αcc

αco

)
=

(
α

1− α

)
,

for 0,67528 ≤ α ≤ 1. Note that the PGP of CCGT-Coal reaches the maximal ENPV when α = αcc = 1,
and µY = µcc = 139. We might say that CCGT "strongly dominates"the PGP, as it has the greatest ENPV,
which is also the less risky ENPV. Thus, the risk of the PGP in the efficient frontier is given by 191,47 ≤
σy ≤ 233. The maximal ENPV for each corresponding level of risk is given by 70,159 ≤ µy ≤ 139. The
efficient PGP of CCGT-Coal are shown in the following figure:

Figure 1. Efficient PGP of CCGT-Coal

The parameters of the EF are presented in the following figure:

Figure 2. EF of PGP of CCGT-Coal

Although CCGT strongly dominates the PGP, there are efficient portfolios that assign to CCGT a share
less than 100 %, which reduce return but also reduce risk. Therefore, CCGT receives a share of 68 % in the

8See Figure 2, page 841, in Roques et al. (2008).

https://doi.org/10.21919/remef.v16i1.447
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efficient portfolio of minimal risk and also minimal ENPV. This result contradicts the following conclusion
of Roques et al. (2008): "The optimal portfolio for an investor in this case study is to invest only in CCGTs,
as any other portfolio would both reduce returns and increase risk.Ïn fact, even devoting a share of 100 % to
CCGT constitutes an efficient portfolio, an economy would face a potential social risk by placing its power
generation in one single technology. Thus a decision-maker might support diversification by, for example,
allowing the PGP to reach a risk of σy = 217,54 and corresponding ENPV µy = 123,7. In such a case, the
upper limit of the EF would be given by αdf = 0,92784 (Figure 2, number 8).

We straightforwardly extend the analysis to the remaining pairs of technologies: CCGT-Nuclear and
Nuclear-coal. Following subsection present the EF of every pair of technologies. The corresponding analysis
will be provided upon request.

It is noteworthy that the present analysis is incomplete, in that it does not include nuclear plants. The
following subsection reveals that introducing nuclear plants changes the shares of the technologies in the
efficient portfolios. We now proceed to analyze PGP of three technologies.

3.2. Portfolios of three technologies

The following result provides the shares of technologies 1, 2, and 3, which guarantee the minimum risk
of the PGP.

Proposition 3 (Minimal risk of PGP of three technologies) From expression (4), the risk of the

PGP of three technologies is given by σY =
√∑3

i=1 α
2
iσ

2
i . Assume that the expected return of technology 1

is the least risky. For σ1,2 = σ1,3 = σ2,3 = 0, αi ∈ [0, 1] for i = 1, 2, 3, and
∑3
i=1 αi = 1 it holds that

a) The risk of the PGP, given by σY , reaches its global minimum at α∗1
α∗2
α∗3

 = 1
|A3|

 σ2
2σ

2
3

σ2
1σ

2
3

σ2
1σ

2
2

 ,

where |A3| = σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3.

b) The minimal risk of the PGP is
σ∗Y =

√
(σ2

1σ
2
2σ

2
3) / |A3| < σ1.

See appendix.
The following result provides the parametric formulation of the EF for PGP of three technologies.

Proposition 4 (EF of PGP of three technologies) Let σY =
√∑3

i=1 α
2
iσ

2
i be the risk of the PGP.

Assume that µ1 ≥ µ2 ≥ µ3, thus, the following holds:

a) The risk of the efficient portfolios is obtained by the shares of technologies 1, 2, and 3, given by the
following parametric equation:  α1

α2

α3

 =

 α1+x

α− α1+x

1− α

 ,

where parameter α is such that [α∗1]
1

1+x ≤ α ≤ αdf ≤ 1. Let x be given by x = (ln [(α∗1) / (α∗1 + α∗2)]) / (ln [α∗1 + α∗2]).
[α∗1]

1
1+x guarantees the minimal risk of the PGP. While αdf guarantees the maximal allowed risk of the

PGP.
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b) The risk of the PGP in the EF is given by

σY (α) =
√

[α1+x]
2
σ2
1 + [α− α1+x]

2
σ2
2 + [1− α]

2
σ2
3 ,

for [α∗1]
1

1+x ≤ α ≤ αdf . Note that σ
(
αdf
)
≤ σ1.

c) The maximal expected return for each corresponding level of risk is given by µY (α) = α1+xµ1+
(
α− α1+x

)
µ2+

(1− α)µ3, for [α∗1]
1

1+x ≤ α ≤ αdf . Note that µ
(
αdf
)
≤ µ1.

See appendix.

We now have the tools to analyze the PGP of CCGT-Nuclear-Coal.

3.2.1. Efficient portfolios of CCGT-Nuclear-Coal

Following Proposition 4, CCGT, nuclear and coal correspond respectively to technologies 1, 2 and 3.
Then, from Proposition 3, the shares of the technologies that ensure the minimal risk of the PGP are

(α∗cc, α
∗
nu, α

∗
co) = (0,53682, 0,20505, 0,25813) .

The minimal risk reached by this PGP is σ∗Y = 170,71. The maximal ENPV for such risk is µY = 46,957.
Roques et al. (2008) are not able to find these values because they only carry out the analysis for pairs of
technologies.

From Proposition 4, we obtain

x = (ln [(0,53682) / (0,53682 + 0,20505)]) / (ln [0,536 82 + 0,20505]) = 1.0835

and [α∗1]
1

1+x = [0,536 82]
1

2. 0835 = 0,74187. Thus, the risk of the efficient portfolios is obtained by the shares of
technologies 1, 2, and 3, given by the following parametric equation: αcc

αnu

αco

 =

 α2.0835

α− α2.0835

1− α

 ,

for 0,74187 ≤ α ≤ 1. The PGP of CCGT-Coal-Nuclear reaches the maximal ENPV when α = αcc = 1,
and µY = µcc = 139. Again, we might say that CCGT "strongly dominates"the PGP, as it has the greatest
ENPV and the lowest risk. The risk of the PGP in the EF is given by 170,71 ≤ σy ≤ 233. The maximal
ENPV for each corresponding risk is given by 46,957 ≤ µy ≤ 139. The efficient PGP of Nuclear-Coal-CCGT
are depicted in the following figure:

https://doi.org/10.21919/remef.v16i1.447
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Figure 3. Efficient PGP of Nuclear-Coal-CCGT

The triangle in Figure 3 resembles the triangle of the left side of Figure 2, page 841, in Roques et al.
(2008). However, alike the triangle in Roques et al. (2008), we include the PGP of minimal risk for each pair
of technologies. The parameters of the EF of the PGP are presented in figure 4.

Figure 4. EF of PGP of Nuclear-Coal-CCGT

We find that, although CCGT strongly dominates the PGP, there are efficient portfolios that assign
to CCGT a share less than 100 %, that reduce return but also reduce risk. In fact, the efficient portfolio
of minimal risk and also minimal ENPV has the following shares: CCGT 53,7 %, nuclear 20,5 %, and coal
25,8 %. This result contradicts the following conclusion of Roques et al. (2008): "The optimal portfolio for
an investor in this case study is to invest only in CCGTs, as any other portfolio would both reduce returns
and increase risk..Again, a decision-maker might support diversification by, for example, allowing the PGP
to reach a risk of σy = 208,09 and corresponding ENPV µy = 116,2. In such a case, the upper limit of the
efficient frontier would be given by αdf = 0,94263 (Figure 4, number 8). We find our results more coherent
than those obtained by Roques et al. (2008).

The present methodology permits the analysis of the PGP of three technologies, providing the shares of
the technologies for any risk-return profile in the EF. Thus, there is no need to apply any mean-variance
utility function, as Roques et al. (2008) do, in order to find efficient portfolios for certain levels of risk aversion.
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Actually, it would be straightforward to verify that the mean-variance utility function used by Roques et al.
(2008) reaches its maximum at the efficient portfolio of minimal risk and also minimal ENPV (σ∗Y = 170,71

and µY = 46,957).

3.3. The portfolio effect

It is worth noting that the minimal risk of the PGP of CCGT-coal is σ∗Y2
= 191.47, while the minimal risk

of the PGP of CCGT-Coal-Nuclear is σ∗Y3
= 170. 71. This is, the minimal risk of a portfolio of three assets is

lower than the minimal risk of a portfolio of only two assets. This fact is not a coincidence, it is due to the
so called "portfolio effect": risk reduction due to diversification (Awerbuch and Berger (2003)). The following
result states that the portfolio effect arises from the fact that the risk of the PGP is a convex function of the
shares of the different technologies.

Proposition 5 (Portfolio effect) Let σY =
√∑n

i=1 α
2
iσ

2
i be the risk of the PGP of n technologies. Let

σ∗Yn
be the minimal risk reached by the portfolio of n technologies. Let σ∗Yk

be the minimal risk reached by a
portfolio of k of the n available technologies, k < n. Then, the following holds:

σ∗Yn
< σ∗Yk

.

See appendix.

The previous result states that there is no need to include a risk-free asset to reduce the risk of a PGP,
as argued by Awerbuch and Berger (2003).

Thus, from Proposition 5, we conclude that the results obtained by Roques et al. (2008) are incomplete, in
that they were derived by analyzing only pairs of the three available technologies. Therefore, their conclusions
create a bias in the design of investment policies in electricity generation.9

4. Nuclear reactor generation portfolios

In this section we replicate the results obtained by Jain et al. (2014). The authors apply analyze portfolios
of nuclear reactors that maximize the returns for given risk levels. They use real options to compute the
distribution of the returns. The following four types of nuclear reactors were considered for the portfolio:
1) Generic Gen III type Light Water Reactor (LWR); 2) Fast Reactors (FR); 3) High Temperature Reactor
(HTR), and 4) Super Critical Water Reactor (SCWR). The analysis was conducted under budget constraint
and capacity constraint. In this section, we replicate the results of the case with budget constraint.

The risk of the portfolio depends on the shares of reactors 1, 2, 3 and 4. The following result provides the
shares of reactors 1, 2, 3, and 4 that guarantee the minimal risk of the PGP.

Proposition 6 (Minimal risk of PGP of four reactors) From expression (4), the risk of the PGP of

four reactors is given by σY =
√∑4

i=1 α
2
iσ

2
i . Assume that the expected return of reactor 4 is the least risky.

Assume that σi,j = 0, for any values i and j , from 1 to 4, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4,
and

∑4
i=1 αi = 1 it holds that

9In this regard, Gómez-Ríos and Juárez-Luna (2019) also analyze pairs of three available technologies. Then, their results
are also incomplete.
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a) The risk of the PGP, σY , reaches its global minimum at
α∗1
α∗2
α∗3
α∗4

 = 1
|A4|


σ2
2σ

2
3σ

2
4

σ2
1σ

2
3σ

2
4

σ2
1σ

2
2σ

2
4

σ2
1σ

2
2σ

2
3

 .

where |A4| = σ2
1σ

2
2σ

2
3 + σ2

1σ
2
2σ

2
4 + σ2

1σ
2
3σ

2
4 + σ2

2σ
2
3σ

2
4.

b) The minimal risk of the PGP is

σ∗Y =
√

(σ2
1σ

2
2σ

2
3σ

2
4) / |A4| < σ4.

See appendix.
The following result provides the parametric formulation of the efficient frontier for PGP of four reactors.

Proposition 7 (EF of PGP of four reactors) Let σY =
√∑4

i=1 α
2
iσ

2
i be the risk of the portfolio.

Assume that µ1 ≥ µ2 ≥ µ3 ≥ µ4, thus, the following holds:

a) The risk of the efficient portfolios is obtained by the shares of reactors 1, 2, 3, and 4, given by the following
parametric equation: 

α1

α2

α3

α4

 =


α1+x1

α− α1+x1

αx2 − α1+x2

1− α− αx2 + α1+x2

 ,

where parameter α is such that [α∗1]
1

1+x1 ≤ α ≤ αdf ≤ 1. Let x1 and x2 be given by

x1 = (ln [(α∗1) / (α∗1 + α∗2)]) / (ln [α∗1 + α∗2]) , and
x2 = (ln [(α∗3) / (α∗3 + α∗4)]) / (ln [α∗1 + α∗2]) .

[α∗1]
1

1+x1 guarantees the minimal risk of the PGP. While αdf guarantees the maximal allowed risk of the
PGP.

b) The risk of the PGP in the EF is given by

σY (α) =
√

[αx1+1]
2
σ2
1 + [α− αx1+1]

2
σ2
2 + [αx2 − αx2+1]

2
σ2
3 + [1− α− αx2 + αx2+1]

2
σ2
4 .

for [α∗1]
1

1+x1 ≤ α ≤ αdf . Note that σ
(
αdf
)
≤ σ1.

c) The maximal expected return for every corresponding level of risk is given by

µY (α) = α1+x1µ1 +
(
α− α1+x1

)
µ2 +

(
αx2 − α1+x2

)
µ3 +

(
1− α− αx2 + α1+x2

)
µ4,

for [α∗1]
1

1+x1 ≤ α ≤ αdf . Note that µ
(
αdf
)
≤ µ1.

See appendix.
We already have the theoretical tools to replicate the results obtained by Jain et al. (2014) for the

nuclear portfolio of Gen III-HTR-SCWR-FR, under budget constraint. Data is taken from Jain et al. (2014),
Table 11, page 108. The expected returns and variance of reactors Gen III, HTR, SCWR and FR are,
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respectively: µGenIII = 1,3259, µHTR = 1,0959, µSCWR = 0,972, µFR = 0,30778, σ2
GenIII = (1,3036)

2
= 1.

699 4, σ2
HTR = (1,0873)

2
= 1,182 2, σ2

SCWR = (1,1184)
2

= 1,2508, and σ2
FR = (0,99925)

2
= 0,9985.

Following Proposition 7, Gen III, HTR, SCWR, and FR correspond, respectively, to reactors 1, 2, 3, and
4. Thus, from Proposition 6, the shares of the four reactors that ensure the minimal risk are

(α∗GenIII , α
∗
HTR, α

∗
SCWR, α

∗
FR) = (0,18188, 0,26145, 0,24711, 0,30955) .

The minimal risk reached by this PGP is σ∗Y = 0,55596. The maximal expected return for such a risk is µY =

0,86314. These values are notably different from those obtained by Jain et al. (2014). These authors find that
the minimal risk of the portfolio is 0,95 while the corresponding expected return to such a level of risk is 0,6.
These authors also indicate, in Figure 7, that the portfolio of minimal risk and also the minimal return has
the following (estimated)10 shares: (αGenIII , αHTR, αSCWR, αFR) = (0, 0,08, 0,37, 0,55).

Following Proposition 7, we obtain

x1 = (ln [(0,18188) / (0,18188 + 0,26145)]) / (ln [0,18188 + 0,26145]) = 1.0953,
x2 = (ln [(0,24711) / (0,24711 + 0,30955)]) / (ln [0,18188 + 0,26145]) = 0,99838,

and [α∗1]
1

1+x1 = [0,18188]
1

1+1.0953 = 0,44333. Thus, the risk of the efficient portfolios is obtained by the shares
of reactors 1, 2, 3, and 4, given by the following parametric equation:

αGenIII

αHTR

αSCWR

αFR

 =


α2.0953

α− α2.0953

α0,99838 − α1,99838

1− α− α0,99838 + α1,99838

 ,

for 0,44333 ≤ α ≤ 0,8739065. The PGP of Gen III-HTR-SCWR-FR reaches the maximal expected return
when α = αGenIII = 1, and µY = µGenIII = 1,3259. However, to support diversification, the PGP might be
allowed to reach a risk of σFR = 0,99925, which is the minimal risk of the four nuclear reactor. In this case,
the corresponding expected return is µy = 11,243144281 and the upper limit of the efficient frontier would
be given by αdf = 0,8739065. Thus, the risk of the PGP in the EF is given by 0,55596 ≤ σy ≤ 0,99925. The
maximal expected return for every corresponding risk is given by 0,86314 ≤ µy ≤ 1,243144281. The efficient
PGPs of Gen III-HTR-SCWR-FR are presented in Figure 5.

10We mention that the shares are .estimated", in that, of not having the true values, we obtained them from the graph.
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Figure 5. Efficient PGP of Gen III-HTR-SCWR-FR

The following figure presents the parameters of the EF. The proposed EF ranges from 1 to 10. Notwiths-
tanding this, we present all of the efficient portfolios in order to compare them with those obtained by Jain
et al. (2014), shown in figure 7b (page 108).

Figure 6. EF of PGP of Gen III-HTR-SCWR-FR

We find that an investor who wants to minimize risk with a lower expected return will chose a portfolio
with following shares: Gen III 18 %, HTR 26 %, SCWR 25 %, and FR 31 %. This result contradicts the
following conclusion of Jain et al. (2014): .An investor who wants to minimize the uncertainty of returns and
is willing to take a lower expected return in order to do so,will choose a portfolio with more Gen IV type
reactors [FR 56 % and HTR 35 %]..Our EF differs considerably from that obtained by Jain et al. (2014). For
example, Jain et al. (2014) state, in figure 7, that the efficient portfolio that reaches an expected return of
1,2, allocates to reactors Gen III and HTR a share of around 50 %. The present analysis indicates that, for
such an expected return, the shares of the four reactors are: Gen III 67 %, HTR 16 %, SCWR 14 %, and FR
3 %. We find our results more coherent than those obtained by Jain et al. (2014).

When replicating the case under capacity constraint, we also find different results from those of Jain et
al. (2014). For example, Jain et al. (2014) state, in figure 8, that the efficient portfolio of minimum risk
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(σ∗Y = 2800) and also minimum expected return (µY = 2800) has the following (estimated) shares: Gen III
43 %, HTR 8 %, SCWR 42 %, and FR 7 %. On the other hand, we find that the efficient portfolio of minimal
risk (σ∗Y = 1584,42) and also minimum expected return (µY = 2601,18) has the following shares: Gen III
27 %, HTR 21 %, SCWR 28 %, and FR 24 % (This case will be provided upon request).

It is noteworthy that the difference in the results creates a bias in the design of investment policies in
electricity generation by nuclear reactors.

Jain et al. (2014) also test the sensitivity of the portfolio under three different scenarios: 1) varying
discount rates; 2) varying electricity price growth rates, and 3) varying uncertainties in electricity prices.
However, they do not provide the statistics of the returns for such scenarios. The present methodology could
be applied to replicate the results of such scenarios if the statistics of the returns were available.

5. Optimal portfolios of wind-power in Europe

In this section, we replicate the results obtained by Roques et al. (2010). These authors use historical wind-
production data from five European countries (Austria, Denmark, France, Germany, and Spain) to identify
cross-country portfolios that minimize the risk of joint wind production for a given level of production. They
employ two objective functions to define optimal cross-country wind power portfolios: i) optimizing wind-
power output, and ii) maximizing wind-power contribution to system reliability. In this section, we replicate
the results of the first case.

The risk of the portfolio depends on the weight received by the wind production of countries 1, 2, 3, 4,
and 5. The following result provides the weights received by countries 1, 2, 3, 4, and 5 that guarantee the
minimal risk of the PGP.

Proposition 8 (Minimal risk of PGP of five countries) From expression (4), the risk of the PGP of

five countries is given by σY =
√∑5

i=1 α
2
iσ

2
i . Assume that the expected return of country 3 is the least risky.

Assume that σi,j = 0, for any values i and j , from 1 to 5, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, 5,
and

∑5
i=1 αi = 1 it holds that

a) The risk of the PGP, σY , reaches its global minimum at
α∗1
α∗2
α∗3
α∗4
α∗5

 = 1
|A5|


σ2
2σ

2
3σ

2
4σ

2
5

σ2
1σ

2
3σ

2
4σ

2
5

σ2
1σ

2
2σ

2
4σ

2
5

σ2
1σ

2
2σ

2
3σ

2
5

σ2
1σ

2
2σ

2
3σ

2
4

 .

where |A5| = σ2
1σ

2
2σ

2
3σ

2
4 + σ2

1σ
2
2σ

2
3σ

2
5 + σ2

1σ
2
2σ

2
4σ

2
5 + σ2

1σ
2
3σ

2
4σ

2
5 + σ2

2σ
2
3σ

2
4σ

2
5.

b) The minimal risk of the PGP is

σ∗Y =
√

(σ2
1σ

2
2σ

2
3σ

2
4σ

2
5) / |A5| < σ3.

See appendix.
Following result provides the parametric formulation of the EF of PGP of cross-country wind power.

Proposition 9 (EF of PGP of five countries) Let σY =
√∑5

i=1 α
2
iσ

2
i be the risk of the PGP. Assume

that µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5, thus, the following holds:
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a) The risk of the efficient portfolios is obtained by the weight received by the wind production of countries
1, 2, 3, 4, and 5, given by the following parametric equation:

α1

α2

α3

α4

α5

 =


α1+x1+x2

α1+x2 − α1+x1+x2

α1+x3 − α1+x2+x3

α− α1+x2 − α1+x3 + α1+x2+x3

1− α

 .

where the parameter α is such that [α∗1]
1

1+x1+x2 ≤ α ≤ αdf ≤ 1.

Let x1, x2, and x3 be given by

x1 = (ln [(α∗1) / (α∗1 + α∗2)]) / (ln [1− α∗5]) ,
x2 = (ln [(α∗1 + α∗2) / (1− α∗5)]) / (ln [1− α∗5]) , and
x3 = (ln [(α∗3) / (α∗3 + α∗4)]) / (ln [1− α∗5]) .

[α∗1]
1

1+x1+x2 guarantees the minimal risk of the PGP, while αdf guarantees the maximal allowed risk of
the PGP.

b) The risk of the PGP in the EF is given by

σY (α) = {
[
α1+x1+x2

]2
σ2
1 +

[
α1+x2 − α1+x1+x2

]2
σ2
2 +

[
α1+x3 − α1+x2+x3

]2
σ2
3+
[
α− α1+x2 − α1+x3 + α1+x2+x3

]2
σ2
4 + [1− α]

2
σ2
5}

1
2 .

for [α∗1]
1

1+x1+x2 ≤ α ≤ αdf . Note that σ
(
αdf
)
≤ σ1.

c) The maximal expected return for every corresponding level of risk is given by

µY (α) =
(
α1+x1+x2

)
µ1 +

(
α1+x2 − α1+x1+x2

)
µ2+

(
α1+x3 − α1+x2+x3

)
µ3 +

(
α− α1+x2 − α1+x3 + α1+x2+x3

)
µ4 + (1− α)µ5.

for [α∗1]
1

1+x1+x2 ≤ α ≤ αdf . Note that µ
(
αdf
)
≤ µ1.

See appendix.
We now possessed the theoretical tools to replicate the results obtained by Roques et al. (2010) for the

wind portfolios of Denmark-Austria-Spain-France-Germany under the case optimizing wind power output.
Data is taken from Roques et al. (2010), Table 5, page 3250. For these the returns and the risk of the different
countries are given by the wind-power capacity factors (WPCF) and their SD. The corresponding expected
returns and variance of Denmark, Austria, Spain, France, and Germany are: µDn = 0,242, µAu = 0,229,
µSp = 0,229, µFr = 0,214, µGr = 0,195, σ2

Dn = (0,027)
2

= 7. 29 × 10−4, σ2
Au = (0,048)

2
= 2. 304 × 10−3,

σ2
Sp = (0,016)

2
= 2. 56× 10−4, σ2

Fr = (0,017)
2

= 2. 89× 10−4, and σ2
Gr = (0,019)

2
= 3. 61× 10−4.

From Proposition 9, countries 1, 2, 3, 4, and 5 correspond, respectively, to Denmark, Austria, Spain,
France, and Germany. Thus, from Proposition 8, the weights received by the wind production of the countries
that ensure the minimal risk are

(
α∗Dn, α

∗
Au, α

∗
Sp, α

∗
Fr, α

∗
Gr

)
= (0,11486, 0,036343, 0,32709, 0,28974, 0,23195) .

The minimal risk of this PGP is given by σ∗Y = 0,0091507. And the maximal expected WPCF for such level of
risk is µY = 0,21826. These values are different from those obtained by Roques et al. (2010). These authors find
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that the minimal risk of the portfolio is somewhat greater that 0,01 while the corresponding expected return
to such a level of risk is 0,2190. They also indicate, in Figure 4, that the portfolio of minimal risk and also the
minimal return has the following (estimated) weights: (αDn, αAu, αSp, αFr, αGr) = (0,09, 0,03, 0,39, 0,29, 0,2).

From Proposition 9, we obtain

x1 = (ln [(0,11486) / (0,11486 + 0,036343)]) / (ln [1− 0,231 95]) = 1.0417,
x2 = (ln [(0,114 86 + 0,036343) / (1− 0,231 95)]) / (ln [1− 0,231 95]) = 6.1585,
x3 = (ln [(0,327 09) / (0,327 09 + 0,289 74)]) / (ln [1− 0,231 95]) = 2.4038,

and [α∗1]
1

1+x1+x2 = [0,114 86]
1

1+1,0417+6.1585 = 0,76805. Thus, the risk of the efficient portfolios is obtained by
the weights received by the wind production of countries 1, 2, 3, 4 and 5, given by the following parametric
equation: 

αDn

αAu

αSp

αFr

αGr

 =


α8.2002

α7.1585 − α8.2002

α3.4038 − α9.5623

α− α7.1585 − α3.4038 + α9.5623

1− α

 ,

for 0,76805 ≤ α ≤ 0,94105. The PGP of Denmark-Austria-Spain-France-Germany reaches the maximal
WPCF when α = αDn = 1, and µY = µDn = 0,242. However, to support diversification, the PGP might be
allowed to reach a risk of σFR = 0,17, that is, one of the less risky countries. In this case, the corresponding
WPCF is µy = 0,2343 and the upper limit of the EF would be given by αdf = 0,94105. Thus, the risk of
the PGP in the EF is given by 0,0091507 ≤ σy ≤ 0,17. The maximal expected return for each corresponding
risk is given by 0,218 26 ≤ µy ≤ 0,2343. The following figure presents the efficient PGP of cross-country
wind-power.

Figure 7. Efficient PGP, Dn-Au-Sp-Fr-Gr

The following figure presents the parameters of the EF. The proposed EF ranges from 1 to 8. However, we
present all of the efficient portfolios in order to compare them with those obtained by Roques et al. (2010),
shown in figure 4 (page 3251).
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Figure 8. EF of PGP, Dn-Au-Sp-Fr-Gr

We obtain a very different EF from that obtained by Roques et al. (2010). For example, we find that the
efficient portfolio that reach a WPCF of 0,2318 allocates the following weights to the five countries: Spain
30 %, Germany 8 %, Austria 5 %, France 7 %, and Denmark 50 %. On the other hand, Roques et al. (2010) find
that, for the same level of WPCF, the efficient portfolio allocates the following weights to the five countries:
Spain 54 %, Germany 0 %, Austria 6 %, France 10 %, and Denmark 31 %. The differences are noteworthy in
the weights received by Denmark, Spain, and Germany. In our analysis, Germany receives a weight greater
than zero while the weights received by Denmark and Spain are nearly switched between each other in the
paper by Roques et al. (2010).

We find our results more coherent than those obtained by Roques et al. (2010). To see this, recall the fact
that the expected return of the PGP is a convex sum of the expected returns of the different assets. Thus,
as the WPCF of 0,2318 is closer to the expected return of Denmark and above the expected return of Spain,
we expect that Denmark should receive a greater weight than Spain in the PGP. Which hold in our analysis
as the grater weight received by Spain is 33 %.

When replicating the case of maximizing the wind-power contribution to the reliability of the system, we
also find different results from those of Roques et al. (2010). Unlike these authors, we find that Germany
receives a weight greater than zero and up to 15 % in the PGP (This case will be provided upon request).

Notably, the difference in the results creates a bias in the design of policies in electricity generation by
cross-country wind-power.

Roques et al. (2010) also find the EF of çonstrained"portfolios. These authors consider two types of
constraints: 1)wind resource potential constraints, and 2) network limitations constraints. However, they do
not provide the statistics of the returns for each scenario. The present methodology could be applied to
replicate the results of such scenarios if the statistics of the returns were available.

6. Final remarks and conclusions

The present paper tackles the problem of the diversification of energy generation by providing a methodology
to construct parametrically the EF of PGP for up to five assets. The methodology was applied to replicate
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and extend the results of the following three papers: Roques et al. (2008), Jain et al. (2014), and Roques et
al. (2010). The present methodology has remarkable advantages:

1. It allows to conduct analysis with up to five assets together.

2. It allows to know the shares of the assets for any risk-return profile.

3. The EF could be limited by a maximum allowed risk of the PGP.

4. It provides more coherent results than those obtained in the existing literature.

5. It points out that there are optimal investment alternatives that have been denied by previous analysis.

6. It avoids biases in the design of investment policies in electricity generation.

Thus, the parametric formulation of PGP proved to be a powerful tool for power generation policy-makers
or investors. In fact, it could be applied to portfolios of assets different than those of power-generation
technologies.

From the structure of the paper, it would be straight forward to extend the methodology to obtaining
the shares of assets in order to guarantee the minimal risk of PGP of more than five assets. However, the
corresponding mathematical proofs must be performed to construct the EF of PGP parametrically of more
than five assets.

Complete analysis relies on the assumption that the covariances of the returns amongst the different assets
is zero. Depending on computational availability, future research could be extended to verify the actual effect
of the correlations of the returns on the minimal risk of the portfolio.
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Appendix

[Proof of Proposition 1] The risk of the PGP of two technologies is given by σY =
√
α2
1σ

2
1 + α2

2σ
2
2 . Assume

that the expected return of technology 1 is the least risky. For σ1,2 = 0, αi ∈ [0, 1] for i = 1, 2, and α1+α2 = 1.
For tractability, the majority of the proof uses the variance of the PGP instead of its SD.

Proof of a) We need to find the shares of technologies 1 and 2, given by (α1, α2), which guarantee the
minimum risk (variance) of the PGP. For tractability, take α2 = 1−α1. Then, the risk of the PGP is given by



Revista Mexicana de Economía y Finanzas Nueva Época, Vol. 16 No. 1, pp.1-29
DOI: https://doi.org/10.21919/remef.v16i1.447 21

σ2
Y = α2

1σ
2
1 +(1− α1)

2
σ2
2 . First, we find the critical point of the risk of the PGP. The First Order Conditions

(FOC) are as follows:
∂σ2

Y /∂α1 = 2α1σ
2
1 + 2 (1− α1) (−1)σ2

2 = 0, (5)

From expression (5), we have
α1σ

2
1 + α1σ

2
2 = σ2

2 , (6)

which leads to
α∗1 = σ2

2/
[
σ2
1 + σ2

2

]
, (7)

Thus, α∗2 = 1− α∗1 = σ2
1/
[
σ2
1 + σ2

2

]
. The critical point of the risk of the PGP is given by shares

(α∗1, α
∗
2) =

(
1/
[
σ2
1 + σ2

2

]) (
σ2
2 , σ

2
1

)
, (8)

To verify that the risk of the PGP, σ2
Y , has a minimum at the critical point (α∗1, α

∗
2), we need the Second

Order Conditions (SOC):
∂2σ2

Y /∂α
2
1 = 2

[
σ2
1 + σ2

2

]
> 0.

Thus, the risk of the PGP is a convex function of the shares of the two technologies, (α1, α2). As a consequence,
the risk of the PGP, σ2

Y , has a global minimum when the shares of technologies 1 and 2 are given by expression
(8).

Proof of b) Thus, the minimal risk of the PGP, σ∗2Y , is given by

σ∗2Y =
(

1/
[
σ2
1 + σ2

2

]2) [(
σ2
2

)2
σ2
1 +

(
σ2
1

)2
σ2
2

]
,

σ∗2Y =
([
σ2
1σ

2
2

]
/
[
σ2
1 + σ2

2

]2) [
σ2
2 + σ2

1

]
,

σ∗2Y =
[
σ2
1σ

2
2

]
/
[
σ2
1 + σ2

2

]
= α∗1σ

2
1 < σ2

1 ,

Then
σ∗Y < σ1. (9)

The minimal risk of the PGP is lower than the risk of the least risky technology.

[Proof of Proposition 2] Let σY =
√
α2
1σ

2
1 + α2

2σ
2
2 be the risk of the PGP of two technologies. From

Proposition 3, we know that the risk of the PGP, σY , reaches its global minimum at point (α∗1, α
∗
2). Assume

that µ1 ≥ µ2.To obtain the parametric formulation of the EF, we express the risk of the PGP as follows:

σ2
Y = α2σ2

1 + (1− α)
2
σ2
2 , (10)

for α ∈ [0, 1]. Note that when α = 1, then σ2
Y = σ2

1 , the risk of the PGP equals the risk of technology 1.
This scenario ensures that technology 1, which has the greatest expected return, receives a share of 100%.
On the other hand, when α = 0, then σ2

Y = σ2
2 , the risk of the PGP equals the risk of technology 2. The

latter implies that technology 2, which has the lowest expected return, receives a share of 100%. Thus, this
formulation of the risk of the PGP allows to have portfolios assigning a share of 100% to the technologies
with the greatest and least expected return. We need to ensure that expression (10) allows to reach the point
(α∗1, α

∗
2) where σY reaches its global minimum. Then, it should hold that

α∗1 = α, (11)

α∗2 = 1− α, (12)

Expressions (11) and (12) lead to the fact that the shares of technologies 1 and 2 in the risk of the PGPs are
given by

α1 = α, (13)

α2 = 1− α, (14)
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Then, from expression (10) the risk of the PGP is given by

σ2
Y = α2σ2

1 + (1− α)
2
σ2
2 , (15)

From expressions (11) and (13), the PGP with lowest risk is given by

α = α∗1. (16)

Now we need to find the PGP with the greatest expected return. The expected return of the PGP is given
by:

µY = α1µ1 + α2µ2, (17)

substituting expressions (13) and (14) in expression (17) leads to

µY = αµ1 + (1− α)µ2, (18)

it is straightforward to obtain that
dµY /dα = µ1 − µ2 ≥ 0,

because of the assumption that µ1 ≥ µ2. Then, the PGP reaches its maximum expected return when
α = 1, µY = µ1, and σ2

Y = σ2
1 . However, there could be an alternative criterion to choose the maximal

expected return of the PGP. For example, if the expected return of technology 1 is the least risky, then,
the criterion could be to choose αdf , so that σ2

Y

(
αdf
)

= σ2
1 ; in this case, αdf < 1. Then, the corresponding

maximal expected return of the PGP is given by µ
(
αdf
)
. Thus, the risk of the efficient portfolios is

obtained by the shares of technologies 1 and 2, given by expressions (13) and (14) for α∗1 ≤ α ≤ αdf . As a
consequence, the risk of the PGP in the EF is given by expression (15). The maximal expected return for
each corresponding level of risk is given by expression (18). Note that µ

(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.

[Proof of Proposition 3] The risk of the PGP of three technologies is given by σY =
√∑3

i=1 α
2
iσ

2
i . Assume

that the expected return of technology 1 is the least risky. For σ1,2 = σ1,3 = σ2,3 = 0, αi ∈ [0, 1] for i = 1, 2, 3,
and

∑3
i=1 αi = 1. For tractability, the majority of the proof uses the variance of the PGP instead of its SD.

Proof of a) We need to find the shares of technologies 1, 2, and 3, given by (α1, α2, α3), which ensures
the minimum risk (variance) of the PGP. For tractability, take α3 = 1− α1 − α2. Then, the risk of the PGP
is given by σ2

Y = α2
1σ

2
1 + α2

2σ
2
2 + (1− α1 − α2)

2
σ2
3 . First, we find the critical point of the risk of the PGP.

The FOC are the following:

∂σ2
Y /∂α1 = 2α1σ

2
1 + 2 (1− α1 − α2) (−1)σ2

3 = 0, (19)

∂σ2
Y /∂α2 = 2α2σ

2
2 + 2 (1− α1 − α2) (−1)σ2

3 = 0, (20)

from expression (19), we have
α1

[
σ2
1 + σ2

3

]
+ α2σ

2
3 = σ2

3 , (21)

from expression (20), we have
α1σ

2
3 + α2

[
σ2
2 + σ2

3

]
= σ2

3 . (22)

Expressions (21) and (22) lead to the following system of equations[
σ2
1 + σ2

3 σ2
3

σ2
3 σ2

2 + σ2
3

] [
α1

α2

]
=

[
σ2
3

σ2
3

]
, (23)

Calculating the inverse of matrix A3 =

[
σ2
1 + σ2

3 σ2
3

σ2
3 σ2

2 + σ2
3

]
we end up with

[
α∗1
α∗2

]
= 1
|A3|

[
σ2
2 + σ2

3 −σ2
3

−σ2
3 σ2

1 + σ2
3

] [
σ2
3

σ2
3

]
, (24)
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where |A3| = σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3 , leading to the result[

α∗1
α∗2

]
= 1
|A3|

[
σ2
2σ

2
3

σ2
1σ

2
3

]
. (25)

Then, α∗3 = 1− α∗1 − α∗2 = σ2
1σ

2
2/ |A3|. The critical point of the risk of the PGP is given by shares

(α∗1, α
∗
2, α
∗
3) = [1/ |A3|]

(
σ2
2σ

2
3 , σ

2
1σ

2
3 , σ

2
1σ

2
2

)
. (26)

To verify that the risk of the PGP, σ2
Y , has a minimum at the critical point (α∗1, α

∗
2, α
∗
3), we need the

SOC. The Hessian matrix is given as follows:

H = 2

[
σ2
1 + σ2

3 σ2
3

σ2
3 σ2

2 + σ2
3

]
,

Following the criteria of the leading principal minors of the Hessian matrix, we have

H1 = 2
(
σ2
1 + σ2

3

)
> 0.

H2 = 2 |A3| = 2
(
σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

)
> 0.

The two leading principal minors of the Hessian matrix are positive for any (α1, α2, α3). Thus, the risk of the
PGP is a convex function of the shares of the three technologies, (α1, α2, α3). As a consequence, the risk of
the PGP, σ2

Y , has a global minimum when the shares of technologies 1, 2, and 3 are given by expression (26).

Proof of b) Thus, the minimal risk of the PGP, σ∗2Y , is given by

σ∗2Y =
(

1/ |A3|2
) [(

σ2
2σ

2
3

)2
σ2
1 +

(
σ2
1σ

2
3

)2
σ2
2 +

(
σ2
1σ

2
2

)2
σ2
3

]
,

σ∗2Y =
([
σ2
1σ

2
2σ

2
3

]
/ |A3|2

) [
σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

]
,

σ∗2Y =
[
σ2
1σ

2
2σ

2
3

]
/ |A3| = α∗1σ

2
1 < σ2

1 ,

Then
σ∗Y < σ1. (27)

The minimal risk of the PGP is lower than the risk of the least risky technology.

[Proof of Proposition 4] Let σY =
√∑3

i=1 α
2
iσ

2
i be the risk of the PGP of three technologies. From

Proposition 5, we know that the risk of the PGP, σY , reaches its global minimum at point (α∗1, α
∗
2, α
∗
3).

Assume that µ1 ≥ µ2 ≥ µ3. To obtain the parametric formulation of the EF, we express the risk of the PGP
as follows:

σ2
Y = α2

(
β2σ2

1 + (1− β)
2
σ2
2

)
+ (1− α)

2
σ2
3 ,

σ2
Y = α2β2σ2

1 + α2 (1− β)
2
σ2
2 + (1− α)

2
σ2
3 ,

(28)

for α, β ∈ [0, 1]. Note that when α = β = 1, then σ2
Y = σ2

1 , the risk of the PGP equals the risk of technology
1. This scenario implies that technology 1, which has the greatest expected return, receives a share of 100%.
On the other hand, when α = 0, then σ2

Y = σ2
3 , the risk of the PGP equals the risk of technology 3. Then,

technology 3, which has the lowest expected return, receives a share of 100%. Thus, this formulation of the
risk of the PGP allows to have portfolios that assign a share of 100% to the technologies with the greatest
and least expected return. We need to ensure that expression (28) allows to reach the point (α∗1, α

∗
2, α
∗
3),

where σY reaches its global minimum. Then, it should hold that

α∗1 = αβ, (29)

α∗2 = α (1− β) , (30)

α∗3 = (1− α) , (31)
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from expression (29)
α = α∗1/β (32)

substituting expression (32) in expression (30) leads to

β = α∗1/ [α∗1 + α∗2] , (33)

substituting expression (33) in expression (32) leads to

α = α∗1 + α∗2. (34)

To ensure that β ∈ [0, 1] for α ∈ [0, 1], assume that

β = β (α) = αx (35)

Then, substituting expressions (33) and (34) in expression (35) we have

α∗1/ [α∗1 + α∗2] = (α∗1 + α∗2)
x .

which leads to
x = (ln [α∗1/ (α∗1 + α∗2)]) / (ln [α∗1 + α∗2]) . (36)

Substituting expression (35) in expressions (29), (30), and (31) leads to the fact that the shares of technologies
1, 2 and 3 in the risk of the PGP are given by the following expressions:

α1 = αβ = α1+x, (37)

α2 = α (1− β) = α− α1+x, (38)

α3 = 1− α. (39)

Then, substituting expressions (37), (38), and (39) into (28) leads to the risk of the PGP:

σ2
Y =

[
α1+x

]2
σ2
1 +

[
α− α1+x

]2
σ2
2 + [1− α]

2
σ2
3 . (40)

From expressions (29) and (37), the PGP with lowest risk is given when

α = [α∗1]
1

1+x . (41)

Now we need to find the PGP with the greatest expected return. The expected return of the PGP is given
by:

µY = α1µ1 + α2µ2 + α3µ3, (42)

substituting expressions (37), (38), and (39) in expression (42) leads to

µY = α1+xµ1 +
(
α− α1+x

)
µ2 + (1− α)µ3, (43)

It is straightforward to obtain that

dµY /dα = [1 + x]αx [µ1 − µ2] + µ2 − µ3 ≥ 0,

because of the assumption that µ1 ≥ µ2 ≥ µ3. Then, the PGP reaches its maximum expected return
when α = 1, µY = µ1 and σ2

Y = σ2
1 . However, there could be an alternative criterion to choose the maximal

expected return of the PGP. For example, if the expected return of technology 1 is the least risky, then, the
criterion could be to choose αdf , so that σ2

Y

(
αdf
)

= σ2
1 , in this case αdf < 1. Then, the corresponding

maximal expected return of the PGP is given by µ
(
αdf
)
. Thus, the risk of the efficient portfolios is

obtained by the shares of technologies 1, 2, and 3, given by expressions (37), (38), and (39) for [α∗1]
1

1+x ≤ α ≤
αdf . As a consequence, the risk of the PGP in the EF is given by expression (40). The maximal expected rerun
for each corresponding level of risk is given by expression (43). Note that µ

(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.
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[Proof of Proposition 5] We conducted the proof for PGP of three technologies. However, it is straight-
forward to extend the proof to PGP of more than three technologies. Consider three-power generation
technologies with corresponding risks σ2

1 , σ2
2 , and σ2

3 . The minimal risk reached by a PGP consisting of
technology 1 is σ∗Y1

= σ1. From proposition 3b, the minimal risk reached by a PGP of two technologies is
σ∗Y2

=
√

[σ2
1σ

2
2 ] / [σ2

1 + σ2
2 ]. From proposition 5b, the minimal risk reached by a PGP of three technologies is

σ∗Y3
=
√

[σ2
1σ

2
2σ

2
3 ] / |A3|, where |A3| = σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3 . We need to prove that σ∗Y1

> σ∗Y2
> σ∗Y3

.

a) First, we verify whether σ∗Y1
> σ∗Y2

holds:

σ1 >
√

[σ2
1σ

2
2 ] / [σ2

1 + σ2
2 ],

σ2
1 >

[
σ2
1σ

2
2

]
/
[
σ2
1 + σ2

2

]
,

σ4
1 + σ2

1σ
2
2 > σ2

1σ
2
2 ,

⇒ σ4
1 > 0.

Then, it holds that σ∗Y1
> σ∗Y2

.

b) Second, we verify whether σ∗Y2
> σ∗Y3

holds:√
[σ2

1σ
2
2 ] / [σ2

1 + σ2
2 ] >

√
[σ2

1σ
2
2σ

2
3 ] / |A3|,[

σ2
1σ

2
2

]
/
[
σ2
1 + σ2

2

]
>
[
σ2
1σ

2
2σ

2
3

]
/ |A3| ,

σ4
1σ

4
2 + σ4

1σ
2
2σ

2
3 + σ2

1σ
4
2σ

2
3 > σ4

1σ
2
2σ

2
3 + σ2

1σ
4
2σ

2
3 ,

⇒ σ4
1σ

4
2 > 0.

Then, it holds that σ∗Y2
> σ∗Y3

. It follows that σ∗Yn
< σ∗Yk

for k < n.

[Proof of Proposition 6] The risk of the PGP of four nuclear reactors is given by σY =
√∑4

i=1 α
2
iσ

2
i .

Assume that the expected return of reactor 4 is the least risky. If σi,j = 0, for any values i and j , from 1 to
4, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, and

∑4
i=1 αi = 1. For tractability, the majority of the proof

uses the variance of the PGP instead of its SD.
Proof of a) We need to find the shares of reactors 1, 2, 3, and 4, given by (α1, α2, α3, α4), which ensures

the minimum risk (variance) of PGP. For tractability, take α4 = 1−α1−α2−α3. Then, the risk of the PGP
is given by σ2

Y = α2
1σ

2
1 + α2

2σ
2
2 + α2

3σ
2
3 + (1− α1 − α2 − α3)

2
σ2
4 . First, we find the critical point of the PGP.

The FOC are the following:

∂σ2
Y /∂α1 = 2α1σ

2
1 + 2 (1− α1 − α2 − α3) (−1)σ2

4 = 0, (44)

∂σ2
Y /∂α2 = 2α2σ

2
2 + 2 (1− α1 − α2 − α3) (−1)σ2

4 = 0, (45)

∂σ2
Y /∂α3 = 2α3σ

2
3 + 2 (1− α1 − α2 − α3) (−1)σ2

4 = 0, (46)

from expression (44), we have
α1

[
σ2
1 + σ2

4

]
+ α2σ

2
4 + α3σ

2
4 = σ2

4 , (47)

from expression (45), we have
α1σ

2
4 + α2

[
σ2
2 + σ2

4

]
+ α3σ

2
4 = σ2

4 , (48)

from expression (46), we have
α1σ

2
4 + α2σ

2
4 + α3

[
σ2
3 + σ2

4

]
= σ2

4 . (49)

Expressions (47), (48), and (49) lead to the following system of equations σ2
1 + σ2

4 σ2
4 σ2

4

σ2
4 σ2

2 + σ2
4 σ2

4

σ2
4 σ2

4 σ2
3 + σ2

4

 α1

α2

α3

 =

 σ2
4

σ2
4

σ2
4

 , (50)
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Calculating the inverse of matrix A4 =

 σ2
1 + σ2

4 σ2
4 σ2

4

σ2
4 σ2

2 + σ2
4 σ2

4

σ2
4 σ2

4 σ2
3 + σ2

4

 we end up with

 α∗1
α∗2
α∗3

 =
1

|A4|

 σ2
2σ

2
3 + σ2

2σ
2
4 + σ2

3σ
2
4 −σ2

3σ
2
4 −σ2

2σ
2
4

−σ2
3σ

2
4 σ2

1σ
2
3 + σ2

1σ
2
4 + σ2

3σ
2
4 −σ2

1σ
2
4

−σ2
2σ

2
4 −σ2

1σ
2
4 σ2

1σ
2
2 + σ2

1σ
2
4 + σ2

2σ
2
4

 σ2
4

σ2
4

σ2
4

 , (51)

where |A4| = σ2
1σ

2
2σ

2
3 + σ2

1σ
2
2σ

2
4 + σ2

1σ
2
3σ

2
4 + σ2

2σ
2
3σ

2
4 . The solution of the system of equations is α∗1

α∗2
α∗3

 = 1
|A4|

 σ2
2σ

2
3σ

2
4

σ2
1σ

2
3σ

2
4

σ2
1σ

2
2σ

2
4

 , (52)

Then, α∗4 = 1− α∗1 − α∗2 − α∗3 = σ2
1σ

2
2σ

2
3/ |A4|. The critical point of the risk of the PGP is given by shares

(α∗1, α
∗
2, α
∗
3, α
∗
4) = [1/ |A4|]

(
σ2
2σ

2
3σ

2
4 , σ

2
1σ

2
3σ

2
4 , σ

2
1σ

2
2σ

2
4 , σ

2
1σ

2
2σ

2
3

)
. (53)

To verify that the risk of the PGP, σ2
Y , has a minimum at the critical point (α∗1, α

∗
2, α
∗
3, α
∗
4), we need the

SOC. The Hessian matrix is given as follows:

H = 2

 σ2
1 + σ2

4 σ2
4 σ2

4

σ2
4 σ2

2 + σ2
4 σ2

4

σ2
4 σ2

4 σ2
3 + σ2

4

 , (54)

Following the criteria of the leading principal minors of the Hessian matrix, we have

H1 = 2
(
σ2
1 + σ2

4

)
> 0,

H2 = 2

∣∣∣∣ σ2
1 + σ2

4 σ2
4

σ2
4 σ2

2 + σ2
4

∣∣∣∣ = 2
(
σ2
1σ

2
2 + σ2

1σ
2
4 + σ2

2σ
2
4

)
> 0,

H3 = 2 |A4| > 0.

The three leading principal minors of the Hessian matrix are positive for any (α1, α2, α3, α4). Then, the risk
of the PGP is a convex function of the shares of the four reactors, (α1, α2, α3, α4). As a consequence, the risk
of the PGP, σ2

Y , has a global minimum when the shares of reactors 1, 2, 3, and 4 are given by expression
(53).

Proof of b) Then, the minimal risk of the PGP portfolio, σ∗2Y , is given by

σ∗2Y =
(

1/ |A4|2
) [(

σ2
2σ

2
3σ

2
4

)2
σ2
1 +

(
σ2
1σ

2
3σ

2
4

)2
σ2
2 +

(
σ2
1σ

2
2σ

2
4

)2
σ2
3 +

(
σ2
1σ

2
2σ

2
3

)2
σ2
4

]
,

σ∗2Y =
([
σ2
1σ

2
2σ

2
3σ

2
4

]
/ |A4|2

) [
σ2
2σ

2
3σ

2
4 + σ2

1σ
2
3σ

2
4 + σ2

1σ
2
2σ

2
4 + σ2

1σ
2
2σ

2
3

]
,

σ∗2Y = σ2
1σ

2
2σ

2
3σ

2
4/ |A4| = α∗4σ

2
4 < σ2

4 ,

Then
σ∗Y < σ4. (55)

The minimal risk of the PGP is lower than the risk of the less risky reactor.

[Proof of Proposition 7] Let σY =
√∑4

i=1 α
2
iσ

2
i the risk of the PGP of four reactors. From Proposition

8, we know that the risk of the PGP, σY , reaches its global minimum at point (α∗1, α
∗
2, α
∗
3, α
∗
4). Assume that

µ1 ≥ µ2 ≥ µ3 ≥ µ4. To obtain the parametric formulation of the EF, we express the risk of the PGP as
follows:

σ2
Y = α2

[
β2σ2

1 + (1− β)
2
σ2
2

]
+ (1− α)

2
[
γ2σ2

3 + (1− γ)
2
σ2
4

]
,

σ2
Y = α2β2σ2

1 + α2 (1− β)
2
σ2
2 + (1− α)

2
γ2σ2

3 + (1− α)
2

(1− γ)
2
σ2
4

(56)
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for α, β, γ ∈ [0, 1]. Note that when α = β = 1, then σ2
Y = σ2

1 , the risk of the PGP equals the risk of reactor
1. This scenario implies that reactor 1, which has the greatest expected return, receives a share of 100%.
On the other hand, when α = γ = 0, then σ2

Y = σ2
4 , the risk of the PGP equals the risk of reactor 4. Then,

reactor 4, which has the least expected return, receives a share of 100%. Thus, this formulation of the risk of
the PGP allows to have portfolios that assign a share of 100% to the reactors with the greatest and lowest
expected return. We need to be sure that expression (56) allows to reach the point (α∗1, α

∗
2, α
∗
3, α
∗
4), where σY

reaches its global minimum. Then, it should holds that

α∗1 = αβ, (57)

α∗2 = α (1− β) , (58)

α∗3 = (1− α) γ, (59)

α∗4 = (1− α) (1− γ) , (60)

from expression (57)
α = α∗1/β, (61)

substituting expression (61) in expression (58) leads to

β = α∗1/ [α∗1 + α∗2] , (62)

substituting expression (62) in expression (61) leads to

α = α∗1 + α∗2. (63)

From expression (59)
1− α = α∗3/γ (64)

substituting expression (64) in expression (60) leads to

γ = α∗3/ [α∗3 + α∗4] . (65)

To ensure that β ∈ [0, 1] and γ ∈ [0, 1] for α ∈ [0, 1], assume that

β = β (α) = αx1 (66)

γ = γ (α) = αx2 (67)

Then, substituting expressions (62) and (63) in expression (66) he have

α∗1/ [α∗1 + α∗2] = (α∗1 + α∗2)
x1 .

which leads to
x1 = (ln [α∗1/ (α∗1 + α∗2)]) / (ln [α∗1 + α∗2]) . (68)

Now, substituting expressions (63) and (65) in expression (67) he have

α∗3/ [α∗3 + α∗4] = (α∗1 + α∗2)
x2 .

which leads to
x2 = (ln [α∗3/ (α∗3 + α∗4)]) / (ln [α∗1 + α∗2]) . (69)

Substituting expression (66) and (67)in expressions (57), (58), (59), and (60) leads to the fact that the share
of reactors 1, 2, 3 and 4 in the risk of the PGPs are given by the following expressions

α1 = αβ = αx1+1, (70)

α2 = α (1− β) = α− αx1+1, (71)
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α3 = αx2 − αx2+1. (72)

α4 = 1− α− αx2 + αx2+1. (73)

Then, substituting expressions (70), (71), (72), and (73) into expression (56) leads to risk of the PGP:

σ2
Y =

[
αx1+1

]2
σ2
1 +

[
α− αx1+1

]2
σ2
2 +

[
αx2 − αx2+1

]2
σ2
3 +

[
1− α− αx2 + αx2+1

]2
σ2
4 . (74)

From expressions (57) and (70), the PGP with lowest risk is given when

α = [α∗1]
1

1+x1 . (75)

Now we need to find the portfolio with the greatest expected return. The expected return of the PGP is given
by

µY = α1µ1 + α2µ2 + α3µ3 + α4µ4, (76)

substituting expressions (70), (71), (72), and (73) into expression (76) leads to

µY = α1+x1µ1 +
(
α− α1+x1

)
µ2 +

(
αx2 − α1+x2

)
µ3 +

(
1− α− αx2 + α1+x2

)
µ4, (77)

It is straightforward to obtain that

dµY /dα = (1 + x1)αx1 [µ1 − µ2] +
[
x2α

x2−1 − (1 + x2)αx2
]

[µ3 − µ4] + [µ2 − µ4] ≥ 0,

because of the assumption that µ1 ≥ µ2 ≥ µ3 ≥ µ4. Then, the PGP reaches its maximal expected
return when α = 1, µY = µ1 and σ2

Y = σ2
1 . However, there could be an alternative criterion to choose the

maximal expected return of the PGP. For example, if the expected return of reactor 4 is the least risky, then,
the criterion could be to choose αdf , such that σ2

Y

(
αdf
)

= σ2
4 . Then, the maximal expected return of the

PGP is given by µ
(
αdf
)
. Then, the risk of the efficient portfolios is obtained by the shares of reactors 1, 2,

3, and 4, given by expressions (70), (71), (72), and (73) for [α∗1]
1

1+x1 ≤ α ≤ αdf . As a consequence, the risk of
the PGP in the EF is given by expression (74). The maximal expected return for every corresponding level
of risk is given by expression (77). Note that µ

(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.

[Proof of Proposition 8] The risk of the PGP of five countries is given by σY =
√∑5

i=1 α
2
iσ

2
i . Assume

that expected return of country 2 is the least risky. If σi,j = 0, for any values i and j , from 1 to 5, such that
i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, 5, and

∑5
i=1 αi = 1. For tractability, the majority of the proof uses the

variance of the PGP instead of its SD.

Proof of a) We need to find the weight given to countries 1, 2, 3, 4, and 5, given by (α1, α2, α3, α4, α5),
which ensures the minimum risk of the PGP. For tractability, take α5 = 1 − α1 − α2 − α3 − α4. Then, the
risk of the PGP is given by σ2

Y = α2
1σ

2
1 + α2

2σ
2
2 + α2

3σ
2
3 + α2

4σ
2
4 + (1− α1 − α2 − α3 − α4)

2
σ2
5 . First, we find

the critical point of the PGP. The FOC are as follows:

∂σ2
Y /∂α1 = 2α1σ

2
1 + 2 (1− α1 − α2 − α3 − α4) (−1)σ2

5 = 0, (78)

∂σ2
Y /∂α2 = 2α2σ

2
2 + 2 (1− α1 − α2 − α3 − α4) (−1)σ2

5 = 0, (79)

∂σ2
Y /∂α3 = 2α3σ

2
3 + 2 (1− α1 − α2 − α3 − α4) (−1)σ2

5 = 0, (80)

∂σ2
Y /∂α4 = 2α3σ

2
3 + 2 (1− α1 − α2 − α3 − α4) (−1)σ2

5 = 0, (81)

from expression (78), we have

α1

[
σ2
1 + σ2

5

]
+ α2σ

2
5 + α3σ

2
5 + α4σ

2
5 = σ2

5 , (82)

from expression (79), we have

α1σ
2
5 + α2

[
σ2
2 + σ2

5

]
+ α3σ

2
5 + α4σ

2
5 = σ2

5 . (83)
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from expression (80), we have

α1σ
2
5 + α2σ

2
5 + α3

[
σ2
3 + σ2

5

]
+ α4σ

2
5 = σ2

5 . (84)

from expression (81), we have

α1σ
2
5 + α2σ

2
5 + +α3σ

2
5 + α4

[
σ2
4 + σ2

5

]
= σ2

5 . (85)

Expressions (82), (83), (84), and (85) lead to the following system of equations
σ2
1 + σ2

5 σ2
5 σ2

5 σ2
5

σ2
5 σ2

2 + σ2
5 σ2

5 σ2
5

σ2
5 σ2

5 σ2
3 + σ2

5 σ2
5

σ2
5 σ2

5 σ2
5 σ2

4 + σ2
5



α1

α2

α3

α4

 =


σ2
5

σ2
5

σ2
5

σ2
5

 , (86)

Calculating the inverse of matrix A5 =


σ2
1 + σ2

5 σ2
5 σ2

5 σ2
5

σ2
5 σ2

2 + σ2
5 σ2

5 σ2
5

σ2
5 σ2

5 σ2
3 + σ2

5 σ2
5

σ2
5 σ2

5 σ2
5 σ2

4 + σ2
5

 we end up with


α∗1
α∗2
α∗3
α∗4

 =
1

|A5|




σ2
2σ

2
3σ

2
4+

σ2
2σ

2
3σ

2
5+

σ2
2σ

2
4σ

2
5+

σ2
3σ

2
4σ

2
5

 −σ2
3σ

2
4σ

2
5 −σ2

2σ
2
4σ

2
5 −σ2

2σ
2
3σ

2
5

−σ2
3σ

2
4σ

2
5


σ2
1σ

2
3σ

2
4+

σ2
1σ

2
3σ

2
5+

σ2
1σ

2
4σ

2
5+

σ2
3σ

2
4σ

2
5

 −σ2
1σ

2
4σ

2
5 −σ2

1σ
2
3σ

2
5

−σ2
2σ

2
4σ

2
5 −σ2

1σ
2
4σ

2
5


σ2
1σ

2
2σ

2
4+

σ2
1σ

2
2σ

2
5+

σ2
1σ

2
4σ

2
5+

σ2
2σ

2
4σ

2
5

 −σ2
1σ

2
2σ

2
5

−σ2
2σ

2
3σ

2
5 −σ2

1σ
2
3σ

2
5 −σ2

1σ
2
2σ

2
5


σ2
1σ

2
2σ

2
3+

σ2
1σ

2
2σ

2
5+

σ2
1σ

2
3σ

2
5+

σ2
2σ

2
3σ

2
5






σ2
5

σ2
5

σ2
5

σ2
5

 (87)

where |A5| = σ2
1σ

2
2σ

2
3σ

2
4 + σ2

1σ
2
2σ

2
3σ

2
5 + σ2

1σ
2
2σ

2
4σ

2
5 + σ2

1σ
2
3σ

2
4σ

2
5 + σ2

2σ
2
3σ

2
4σ

2
5 . The solution of the system of

equations is 
α∗1
α∗2
α∗3
α∗4

 = 1
|A5|


σ2
2σ

2
3σ

2
4σ

2
5

σ2
1σ

2
3σ

2
4σ

2
5

σ2
1σ

2
2σ

2
4σ

2
5

σ2
1σ

2
2σ

2
3σ

2
5

 , (88)

Then, α∗5 = 1− α∗1 − α∗2 − α∗3 − α∗4 = σ2
1σ

2
2σ

2
3σ

2
4/ |A5|. The critical point of the risk of the PGP is

α∗1
α∗2
α∗3
α∗4
α∗5

 = 1
|A5|


σ2
2σ

2
3σ

2
4σ

2
5

σ2
1σ

2
3σ

2
4σ

2
5

σ2
1σ

2
2σ

2
4σ

2
5

σ2
1σ

2
2σ

2
3σ

2
5

σ2
1σ

2
2σ

2
3σ

2
4

 . (89)

To verify that the risk of the PGP, σ2
Y , has a minimum at critical point (α∗1, α

∗
2, α
∗
3, α
∗
4, α
∗
5), we need the
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SOC. The Hessian matrix is given as follows:

H = 2


σ2
1 + σ2

5 σ2
5 σ2

5 σ2
5

σ2
5 σ2

2 + σ2
5 σ2

5 σ2
5

σ2
5 σ2

5 σ2
3 + σ2

5 σ2
5

σ2
5 σ2

5 σ2
5 σ2

4 + σ2
5

 , (90)

Following the criteria of the leading principal minors of the Hessian matrix, we have

H1 = 2
(
σ2
1 + σ2

5

)
> 0,

H2 = 2

∣∣∣∣ σ2
1 + σ2

5 σ2
5

σ2
5 σ2

2 + σ2
5

∣∣∣∣ = 2
(
σ2
1σ

2
2 + σ2

1σ
2
5 + σ2

2σ
2
5

)
> 0,

H3 = 2

∣∣∣∣∣∣
σ2
1 + σ2

5 σ2
5 σ2

5

σ2
5 σ2

2 + σ2
5 σ2

5

σ2
5 σ2

5 σ2
3 + σ2

5

∣∣∣∣∣∣ = 2
(
σ2
1σ

2
2σ

2
3 + σ2

1σ
2
2σ

2
5 + σ2

1σ
2
3σ

2
5 + σ2

2σ
2
3σ

2
5

)
> 0,

H4 = 2 |A5| > 0.

The four leading principal minors of the Hessian matrix are positive for any (α1, α2, α3, α4, α5).Thus, the
risk of the PGP is a convex function of the weight received by the five countries (α1, α2, α3, α4, α5). As a
consequence, the risk of the PGP, σ2

Y , has a global minimum when the weights received by the five countries
are given by expression (89).

Proof of b) Then, the minimal risk of the PGP, σ∗2Y , is given by

σ∗2Y =
(

1/ |A5|2
)

[
(
σ2
2σ

2
3σ

2
4σ

2
5

)2
σ2
1 +

(
σ2
1σ

2
3σ

2
4σ

2
5
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3 ,

Then
σ∗Y < σ3. (91)

The minimal risk of the PGP is lower than the risk of the least risky country.

[Proof of Proposition 9] Let σY =
√∑5

i=1 α
2
iσ

2
i be risk of the PGP of five countries. From Proposition

10, we know that the risk of the PGP, σY , reaches its global minimum at point (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5). Assume

that µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5. To obtain the parametric formulation of the EF, we express the risk of the
PGP as follows:
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(92)
for α, η, β, γ ∈ [0, 1]. Note that when α = β = η = 1, then σ2

Y = σ2
1 , the risk of the PGP equals the risk

of country 1. This fact implies that country 1, which has the greatest expected return, receives a share of
100%. On the other hand, when α = 0, then σ2

Y = σ2
5 , the risk of the PGP equals the risk of country 5.

Then, country 5, which has the least expected return, receives a share of 100%. Then, this formulation of the
risk of the PGP allows to have portfolios that assign a share of 100% to the countries with the greatest and
least expected return. We need to be sure that expression (92) allows to reach the point (α∗1, α

∗
2, α
∗
3, α
∗
4, α
∗
5),

where σY reaches its global minimum. Then, it should hold that

α∗1 = αηβ, (93)

α∗2 = αη (1− β) , (94)

α∗3 = α (1− η) γ, (95)
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α∗4 = α (1− η) (1− γ) , (96)

α∗5 = (1− α) , (97)

from expression (93)
αη = α∗1/β (98)

substituting expression (98) in expression (94) leads to

β = α∗1/ [α∗1 + α∗2] , (99)

substituting expression (99) in expression (98) leads to

αη = α∗1 + α∗2. (100)

From expression (97)
α = 1− α∗5, (101)

substituting expression (101) into expression (100) leads to

η = [α∗1 + α∗2] / [1− α∗5] . (102)

From expression (95)
α (1− η) = α∗3/γ, (103)

substituting expression (103) in expression (96) leads to

γ = α∗3/ [α∗3 + α∗4] , (104)

To ensure that β ∈ [0, 1], η ∈ [0, 1] and γ ∈ [0, 1] for α ∈ [0, 1] , assume that

β = β (α) = αx1 (105)

η = η (α) = αx2 (106)

γ = γ (α) = αx3 (107)

Then, substituting expressions (99) and (101) into expression (105) he have

α∗1/ [α∗1 + α∗2] = (1− α∗5)
x1 .

which leads to
x1 = [ln (α∗1/ [α∗1 + α∗2])] / (ln [1− α∗5]) . (108)

Substituting expressions (101) and (104) in expression (106) he have

[α∗1 + α∗2] / [1− α∗5] = (1− α∗5)
x2 .

which leads to
x2 = [ln ([α∗1 + α∗2] / [1− α∗5])] / (ln [1− α∗5]) . (109)

Substituting expressions (101) and (102) in expression (107) he have

α∗3/ [α∗3 + α∗4] = (1− α∗5)
x3 .

which leads to
x3 = [ln (α∗3/ [α∗3 + α∗4])] / (ln [1− α∗5]) . (110)

Substituting expression (105), (106) and (107) into expressions (93), (94), (95), (96), and (97) leads to the
fact that the weights received by countries 1, 2, 3, 4 and 5 in the risk of the PGPs are given by the following
expressions,

α1 = αηβ = α1+x1+x2 , (111)
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α2 = αη (1− β) = α1+x2 − α1+x1+x2 , (112)

α3 = α (1− η) γ = α1+x3 − α1+x2+x3 , (113)

α4 = α (1− η) (1− γ) = α− α1+x2 − α1+x3 + α1+x2+x3 , (114)

α5 = 1− α. (115)

Then, substituting expressions (111), (112), (113), (114), and (115) in expression (92) leads to the risk of the
PGP:

σ2
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σ2
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2
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5 .

(116)
From expressions (93) and (111), the PGP with lowest risk is given when

α = [α∗1]
1

1+x1+x2 . (117)

Now we need to find the portfolio with the corresponding greatest expected return. The expected return of
the PGP is given by

µY = α1µ1 + α2µ2 + α3µ3 + α4µ4 + α5µ5, (118)

substituting expressions (111), (112), (113), (114), and (115) in expression (118) leads to

µY =
(
α1+x1+x2

)
µ1 +

(
α1+x2 − α1+x1+x2

)
µ2+

(
α1+x3 − α1+x2+x3

)
µ3 +

(
α− α1+x2 − α1+x3 + α1+x2+x3

)
µ4 + (1− α)µ5.

(119)
It is straightforward to obtain that

dµY /dα = (1 + x1 + x2)αx1+x2 [µ1 − µ2] + (1 + x2)αx2 [µ2 − µ4] +[(1 + x3)αx3 − (1 + x2 + x3)αx2+x3 ] [µ3 − µ4] + [µ4 − µ5] ≥ 0,

because of the assumption that µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5. Then, the PGP reaches its maximal expected
return when α = 1, µY = µ1 and σ2

Y = σ2
1 . However, there could be an alternative criterion to choose the

maximum expected return of the PGP. For example, if the expected return of country 3 is the least risky,
then, the criterion could be to choose αdf , so that σ2

Y

(
αdf
)

= σ2
3 . Then, the maximal expected return

of the PGP is given by µ
(
αdf
)
. The risk of the efficient portfolios is obtained by the weights received by

the wind production of countries 1, 2, 3, 4, and 5, given by expressions (111), (112), (113), (114), and (115)
for [α∗1]

1
1+x1+x2 ≤ α ≤ αdf . As a consequence, the risk of the PGP in the EF is given by expression (116).

The maximal expected return for every corresponding level of risk is given by expression (119). Note that
µ
(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.
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