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Abstract

The objectives of this work are to investigate whether: i) a GARCH model with Generalized

Pareto Distribution (GPD) innovations, complemented with an EWMA volatility forecast in

order to consider practical problems that might arise in GARCH applications that comprise

long periods of time, appropriately estimate risk measures (VaR and Expected Shortfall) for

Mexican financial series, at high confidence levels; ii) the estimates yielded by such model are

better than those given by a GARCH with Gaussian or Student-t innovations. Our quality

assessment and comparison between models consist of backtests of the risk measures estimates

yielded by each method used in this paper. Our results show that: i) the methodology used in

this paper appropriately estimates our two risk measures; ii) the GARCH-GPD model yields

better results than the GARCH-Gaussian and GARCH-t-Student models. Our results are

limited to one-day risk measures estimates. As far as we know, our results on the Expected

Shortfall are the first of its kind for Mexican series. We conclude that the study achieved its

objectives and there are important areas of opportunity for further studies.
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(Primer lugar categoŕıa tesis del XXXII Premio de Investigación Financiera

IMEF-EY 2016)

Resumen

Los objetivos de este trabajo son investigar si: i) un modelo GARCH con innovaciones

modeladas mediante una Distribución Pareto Generalizada (DPG), complementado con un

pronóstico EWMA de volatilidad para considerar problemas prácticos que pueden surgir en

aplicaciones GARCH que comprenden largos periodos de tiempo, estima adecuadamente

medidas de riesgo (VaR y Expected Shortfall) para series financieras mexicanas a altos niveles

de confianza; ii) las estimaciones de dicho modelo son mejores que aquellas entregadas por

un GARCH con innovaciones Gaussianas o t-Student. Nuestras evaluaciones de calidad y

comparación entre modelos consisten de backtests de las medidas de riesgo de cada método
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utilizado en el presente art́ıculo. Nuestros resultados muestran que: i) la metodoloǵıa

utilizada estima apropiadamente nuestras dos medidas de riesgo; ii) el modelo GARCH-DPG

entrega mejores resultados que los modelos GARCH-Normal y GARCH-t-Student. Nuestros

resultados se limitan a estimaciones de medidas de riesgo a un d́ıa. Hasta donde

sabemos, nuestros resultados sobre el Expected Shortfall son los primeros de su clase para

series mexicanas. Concluimos que el estudio alcanzó sus objetivos y existen importantes

áreas de oportunidad para estudios posteriores.

Palabras clave: Análisis de riesgos, Valor en riesgo, Pronóstico de volatilidad, GARCH, Teoŕıa

de valores extremos, Riesgo de mercado, Déficit esperado.

Clasificación JEL: G11, G17, C22.

1. Introduction

Modern society relies on the proper functioning of the financial system and has
a collective interest in its stability. Financial crises, such as the one of 2008,
have pointed out the importance of ensuring that financial institutions properly
measure and balance the risks they take and hold enough capital to withstand
any foreseeable problems. Consequently, society views risk management
positively and confers regulators the task of forging a framework that safeguards
its interests.

Therefore, it is important to develop and test accurate methodologies to
measure the risks to which a financial institution is exposed. In this regard,
the main financial risk categories are market risk, credit risk, operative risk,
and liquidity risk. This paper studies and assesses a technique to measure the
best-known risk in the banking industry: market risk.

The studied technique uses daily information of the changes of market
risk factors and has two important components. The first one is a stochastic
volatility model to model and forecast the risk factors dynamics. The second
one is the use of Extreme Value Theory (EVT) to complement such dynamic
model.

Specifically, it uses a GARCH model with Generalized Pareto innovations
to estimate two important risk measures: Value-at-Risk (VaR) and Expected
Shortfall.1 Alexander McNeil and Rüdiger Frey first suggested this kind of
model in their extraordinary contribution Estimation of Tail-Related Risk
Measures for Heteroscedastic Financial Time Series: An Extreme Value
Approach (McNeil, J. A. and Frey, R., 2000). Such technique takes advantage
of the power of the Peaks Over Threshold (POT) method to describe tails
of univariate distributions to estimate risk measures for financial time series at
high confidence levels.

However, in contrast with McNeil, J. A. and Frey, R., 2000, the technique
used in this paper investigates how suitable is to complement the GARCH
volatility-modelling component of the mentioned methodology with an
Exponential Weighted Moving Average (EWMA) approach, on the days when

1 From a mathematical point of view, VaR is a quantile of the loss distribution, X, of an
asset whereas Expected Shortfall is given by E[X|X > V aR]. Regarding the interpretation

of these risk measures, VaR can be thought as the loss that is not exceeded with a high
probability (the so-called confidence level) while Expected Shortfall represents the expected

loss given that the loss X exceeds VaR.
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the GARCH specification presents a practical problem such as a non-significant
parameter.2 This feature might be an advantage in applications that cover
periods of considerable length.

Thus, the objectives of the presented study are to investigate:

i) If the risk measures estimates that the proposed technique yields for
Mexican data, during both crisis and relative calm seasons in financial markets,
and especially for high confidence levels, are well behaved.

ii) How does the risk measures estimates yielded by the proposed technique
compare with estimations with another GARCH modeling approach: to model
GARCH innovations with a Gaussian or Student-t distribution.

For both points, our quality assessment and comparison between methods
will be made using backtests of the risk measures estimates yielded by each
method used in this paper.

The Mexican financial series used for our study are the USD/MXN
exchange rate (FIX) and the main Mexican stock index, the Prices and Quotes
Index (IPC for its acronym in Spanish).

When exploring relevant literature on this type of applications we find that
Kourouma, L. et al. (2011) carried out an exercise similar to ours; however,
such work focuses on US stock indices and asset prices such as oil and corn
during a financial crisis. As far as we know, there has not been an application
like ours in Mexican time series.

On the other hand, in Fernández, V. P. (2003) and Aguirre, A. I. et al.

(2013) a GARCH model is used in conjunction with the POT Method to
analyze, among other assets, a Mexican financial series: the IPC. However,
such applications focus solely on the estimation and evaluation of VaR. That
is, the Expected Shortfall analysis, which is an equally important risk measure,
is left out.

In addition, in López, E. (2013) a GARCH model and another technique
from the EVT, the Block Maxima Method, is used to analyze another Mexican
financial series: the FIX exchange rate. However, this work also focuses solely
on VaR; other Mexican financial series and the Expected Shortfall are left out
of the analysis.

Consequently, our work is separated from those made previously in several
senses. First, while some attention had been devoted to the study of the IPC
using GARCH-GPD methods, these exercises focused solely on the estimation
and evaluation of VaR. That is, they ignored the Expected Shortfall, which

2 EWMA is a more informal volatility forecasting technique popularized in J.P. Morgans
RiskMetrics. Specifically, EWMA is a volatility exponential smoothing (it weights the data

from most recent to most distant with a sequence of exponentially decreasing weights that
sum to almost one) of the form P(t+1)Y

2
(t+1) = λY 2

t +(1−λ)P(t−1)Y
2
t . Thus, EWMA is

essentially a recursive scheme where the prediction at time t is obtained from the prediction at

time t− 1. The choice of the parameter λ is subjective; the smaller the value the less weight
is put on the most recent information. In Section 2, we discuss an approach that suggest

how to select this value based on a GARCH specification. In this regard, more information
about this technique and its relationship with GARCH models is available in Sections 4.2.4

and 4.4.1 of McNeil, A. J. et al. (2005).
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is an equally important risk measure that has the advantage of having better
theoretical properties than VaR; specifically, to be a coherent risk measure.

Thus, as far as we know this is the first analysis of this nature that estimates
and evaluates Expected Shortfall estimates at high confidence levels for Mexican
series.

On the other hand, our application also contrasts with previous work in
the fact that it analyzes the efficiency in Mexican data of the GARCH-GPD
method in periods both of crisis (unlike Fernández, V. P. (2003)) and relative
calm (in contrast to Kourouma, L. et al. (2011), López, E. (2013) and Aguirre,
A. I. et al. (2013)).

Indeed, because the quality of conditional VaR and Expected Shortfall
estimates was evaluated at high confidence levels, the length of the backtests
used was long enough to evaluate the methodology used both in periods of crisis
(as in 2008) and relative calm in the markets.

Another peculiarity of our application is related to a classic problem of
applications with extremes: the choice of a threshold from which the tail of a
distribution is considered to start. Specifically, our work explored how adequate
for Mexican data is the methodology suggested by McNeil, A. J. and Frey, R.
(2000) to choose an optimal threshold for the right tail of a GARCH innovation
distribution. Investigating the adequacy of this method in Mexican series is
of great importance: it shows the presence of an important empirical fact in
national data, which may be relevant in subsequent analyzes.

After this introduction, our paper structure is as follows: section two
describes the methodology used in our study, including the general development
of our backtesting procedures; section three presents the main results of our
application; section four presents our conclusions and a few ideas for future
work on this topic.

2. Methodology

Let {Xt}
∞
t=1 be a stationary time series that represents daily observations of

log-returns of the price of a financial asset.3 We will assume that the dynamics
of Xt is given by a GARCH(1,1)4 model:

Xt = σtZt, σ
2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 (1)

3 Given that risk management typically focuses in analyzing financial loses, in risk
measuring studies is typical to associate a positive sign to losses and a negative one to gains.

This is done for both practical (e.g. work with positive random variables) and theoretical
(e.g. facilitate the application of certain statistical techniques to losses data) reasons. Our

paper follows this practice and associates a positive sign to Mexican peso depreciations and

IPC losses.
4 There are many possible elections for the series dynamics (e.g. ARCH, HARCH

processes), however, our election of the GARCH(1,1) is motivated by the capacity of such

model to parsimoniously reproduce some of the main stylized facts (see Section 4.1.1 of
McNeil, A. J. et al. (2005)) of financial returns series. Furthermore, studies like Hansen, P.

R. and Lunde, A. (2005) have shown that such models are able to deliver accurate short-term
volatility forecasts for series of financial returns. Evidence of the goodness of fit that this

model delivers for our series is shown in Section 3.
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Where α0 > 0, α1 = 0, β1 = 0 and the innovation process Zt is a Strict White
Noise (i.e. it is formed by independent and identically distributed random
variables) with distribution function FZ(z) with zero mean and unitary
variance. We will suppose that σt is measurable with respect to F(t−1), the
available information of the log-returns process up to time t − 1.

Given that our backtests will have a considerable length,5 we will
complement our volatility modelling with an EWMA approach. This is related
with two typical scenarios that could affect our GARCH volatility forecasting:

1. The parameter α̂0 of the GARCH model fitted to the series is not
statistically significant (which in our application is checked with the traditional
t-statistic test of statistical significance).

2. The GARCH process fitted to the series is not stationary (or,

equivalently, that α̂1 + β̂1 > 1.
While such cases are rare (specially the second one), they could appear in some
days in an application that covers an extended period of time (approximately 20
years) like ours. Thus, while the volatility of our series will always be estimated
through a GARCH(1,1) model, its forecasts will instead be given by:

σ̂2
t+1 =

{
α̂1X

2
t + (1 − α̂1) σ̂2

t if α̂1 + β̂1 > 1 o B (α̂0) > 0.05

β̂1 + α̂1X
2
t + β̂1σ̂2

t in any other case

Where α̂0, α̂1 and β̂1are the estimated values of the GARCH model fitted to
our series on day t and B(α0) is the p-value of the t-statistic test applied to α̂0.

This is, on the days when any of the cases previously mentioned occur, we
use an EWMA approach to forecast the volatility of our series. On the rest of
the days, we use the forecast given by our GARCH specification.

Note that, given the definition of (2), our EWMA specification almost
replicates the volatility forecast suggested by the GARCH model.6 This is a
desirable feature in such quantity if the GARCH model achieves to estimate
appropriately the volatility of Mexican financial time series.

Since our application will investigate the adequacy of different models for
the innovation distribution, we estimate the parameters of our GARCH models
using a Quasi-Maximum likelihood approach. This is in order to avoid making
any prior assumptions on the innovation distribution.7

Given that,
FXt+1|Ft

(x) = P (σt+1Zt+1 ≤ x|Ft)

= FZ

(
x

σt

)
,

5 In fact, as our goal is to evaluate risk measures estimations at high confidence levels
(e.g. a=0.999), our backtests will have to use several years of daily information in order to

observe loses that occur with the corresponding low probabilities (e.g. 0.001).
6 Indeed, works like Mart́ınez, J. (2014) and ours show that for certain Mexican financial

series, the value of the sum α̂1 + β̂1 is typically close to 1
7 For those interested readers who are not familiar with Quasi-Maximum likelihood

estimation procedures, we recommend reading Chapter 4 of McNeil, A. J. et al. (2005).
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we have that VaR and Expected Shortfall formulas turn out to be:

V aRt
α = σt+1qα (Z) (3)

ESt
α = σt+1ESα (Z) (4)

Where σ(t+1) follows the specification given in (2) and qα(Z)t and ESα(Z)
denote the risk measures associated to the distribution of Zt, which, by
hypothesis, do not depend on t.

When the innovation distribution is modeled by a Gaussian or Student-t
distribution, such risk measures can be computed easily. In fact, they are given
by:

Table 1. Risk Measures Formulas for the Gaussian and Student-t models.

Formulas for quantile (second column) and Expected Shortfall (third column) for the

Gaussian and Student-t models.

On the other hand, we can use the POT method to model the innovation
distribution. The POT method is based on the Gnedenko-Balkema-Pickands-
de Haan theorem, which is a limit result from the Extreme Value Theory that,
roughly speaking, says that the excess distribution, Fu (x) = P (X−u ≤ x|X >
u), of an i.i.d. sequence of random variables can be approximated by a
Generalized Pareto Distribution, for a big enough threshold u.

Specifically, as Aguirre, A. I. et al. (2013) summarizes, the Gnedenko-
Balkema-Pickands-de Haan theorem tells us is that, for a large class of
univariate distributions, the excess distribution Fu, for big values of u, is
approximately equal to

Fu ≈ G (x) =

{
1−(1− x

β )−1/ξ

1−e
−

x
β

if ξ 6= 0
if ξ = 0

Where ξ ∈ Rβ = σ + ξ (u − µ) , ξ and β are known, respectively, as the form
and scale parameters of the GPD.

In the former expression, three possible distributions can be obtained,
depending on the value of the parameter ξ of the GPD. If ξ > 0, the GPD is a
Pareto distribution with parameters α = 1/ξ and κ = β/ξ, for x > 0. For ξ = 0
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the GPD corresponds to an exponential distribution with rate 1/β and x > 0.
Finally, if ξ < 0, the GPD take the form of type II Pareto Distribution, which
is defined in the range 0 < x < β/ξ.

There are at least two ways to work with thresholds. One is through the
value of the threshold itself; i.e. a relative large value in terms of the magnitude
of our observations. The second one is to express the threshold in terms of the
number of data points that are above it. An example of the second approach
for a sample of 1,000 observations would be to fix the value of u equal to the
(k + 1) order statistic; thus, if k = 100 we have 100 observations above u and
we consider that the tail of the distribution of our sample consists of the 10%
biggest observations in it.

For the first approach, one can use the graph of the Sample Mean Excess
Function to find appropriate threshold values to use in the POT Method. The
Sample Mean Excess Function is an empirical estimator of the function e (u) =
E(Y − u|Y > u). For an i.i.d. sequence of n random variables, {Yi}

n
i=1, it is

given by:

en (u) =

∑n
i=1 max {Yi − u, 0}∑n

i=1 I{Yi>u}
.

That is, en(u) represents the sum of the excesses above the threshold, u, divided
by the number of observations that exceed u. The graph of the Sample Mean
Excess Function is defined as:

{(u, en (u)) |Yn,n < u < Y1,n}

Where Y1,n > · · · > Yn,n represent the order statistics of the sample {Yi}
n
i=1

The interpretation of the graph of the Sample Mean Excess Function is: if from a
certain threshold, the points show an linear upward trend, then there are signs
of heavy tail behavior. In the same way, data with exponential distribution
would give an approximately horizontal line. Lastly, data from a short tail
distribution would show a linear downward trend. In all cases, the threshold
from which any of these behaviors is noted might be a good candidate to apply
the POT Method.

Regarding the second approach, McNeil, A. J. and Frey, R. (2000) suggest
carrying out a simulation study. Specifically, because a pair of desir-
able characteristics in an estimator is that it is unbiased and with least Mean
Squared Error (MSE), they suggest the following: identify a distribution that
represents at least a good approximation to the true distribution of innovations
(e.g. a Student-t distribution, because the series of financial returns are usually
leptokurtic). If such a distribution can be seen as a particular case of the GPD
(e.g. a Student-t distribution with ν degrees of freedom can be considered as a
GPD with a shape parameter ξ = 1/ν), one can use this fact to estimate the
bias and MSE of ξ, and some other amount of interest (e.g. a high quantile of
the distribution) of the fitted GPD. Then, they suggest plotting the bias and
MSE of these estimates as a function of κ (the number of data that conform
the tail of the distribution). Finally, one should explore the graphs generated
by this method and find the value of κ that minimizes both the bias and mean
square error of the estimates of ξ and any other amount of interest.
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Once the threshold for applying the POT Method has been selected, the
parameters of the GPD can be estimated via maximum likelihood, based on the
sample versions of the GARCH innovations; that is, the standardized residuals
of the model. In our application, we estimate GPD parameters by Maximum
likelihood.8

In this way, it is possible to use the approximation given by the Gnedenko-
Balkema-Pickands-de Haan theorem and develop the following VaR and
Expected Shortfall formulas for a distribution whose tails are modeled by a
GPD:

qα = u +
β̂

ξ̂

((
n

Nu
(1 − α)

)−ξ̂

− 1

)
; ESα =

qα

1 − ξ̂
+

β̂ − ξ̂u

1 − ξ̂
(5)

Where Nu represents the amount of data above the threshold and n the total
size of the sample used. Thus, by substituting these estimates in the equations
given in (3) and (4), it is possible to construct the estimators of V aRt

α and ESt
α

based on a GARCH-GPD model.

2.1 Backtesting

To evaluate the estimates of V aRt
α and ESt

α obtained through the GARCH-
Normal, GARCH-Student-t and GARCH-GPD models it is possible to develop
backtests.

We evaluate the performance of V aRt
α and ESt

α on a historical series
x1, . . . , xm, where m � n, based on a memory of n days on days t ∈ T =
n, · · · , m− 1. This means that if we worked, for example, with a time window
of n = 1,000 banking days, for each prediction of V aRt

α and ESt
α we would

use, approximately, 4 years of daily information.

To perform our V aRt
α backtest, on each day t ∈ T we fit a new GARCH

model to the corresponding loss observations, we calculate the standardized
residuals of the model and determine a new estimator of the
innovation distribution via The POT method (or any other model for
innovations). Then, we use the formula given in (3) and, based on the model

fitted to the log-returns, we estimate V aRt
α. Next, we compare V̂ aR

t

α
with x(t+1) for the values of α considered appropriate; in our case, we were
interested in α ∈ 0.95, 0.99, 0.995, 0.999. We say that a violation occurred

whenever xt+1 > ̂V aRt
α.

It is possible to develop a binomial test based on the number of violations
to evaluate the performance of our estimates of V aRt

α. Assuming the dynamics
of equations (2) and (3), the violation indicator at time t ∈ T is a Bernoulli
random variable:

It = I{Xt+1>V aRt
α} = I{Zt+1>qα} ∼ Bernoulli (1 − α)

8 For the reader interested in the details of the construction of the maximum likelihood

estimators of the parameters of the GPD, we recommend reading Section 6.5.1 of Embrechts,

P. et al. (1997).
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Moreover, It and Is are independent for s, t ∈ T and s 6= t, since Zt and
Zs are independent. Thus,

∑

t∈T

It ∼ Binomial (card (T ) , 1 − α)

that is, the total number of violations has a binomial distribution under the
proposed model.

In this way, under the null hypothesis that the model correctly estimates
the conditional quantiles of the studied series, the empirical version of the
statistic

∑
t∈T I{

Xt+1>V̂ aRt
α

} comes from the Binomial (card ( T ) , 1 − α)

distribution.

Therefore, we can perform a two-tailed binomial test to test this null
hypothesis against the alternative that the method entails a systematic error
in the estimation of V aRt

α that leads to very few or too many violations. A
smaller p-value than our level of significance (typically 0.05) in this binomial
test will be interpreted as evidence against the null hypothesis.

Now, it is also possible to develop a backtest to evaluate our estimates
of ESt

α. This backtest is similar to that developed in the case of V aRt
α and

will allow us to investigate whether the model proposed in the methodology
discussed in this Section provides reasonable estimates of ESt

α. This time we
are interested in the size of the difference between X(t+1) and ESt

α given the

event of a violation to the V aRt
α quantile. We define the residuals

Rt+1 =
Xt+1 − ESt

α

σt+1
= Zt+1 − E [Z |Z〉 qα (Z)] .

It is clear that under our model (2) these residuals are i.i.d. and that,
conditioned to the event {Xt+1 > V aRt

α} or equivalently {Zt+1 > qα (Z)}, have
an expected value equal to zero.

Thus, suppose again that we perform our backtest over the days in the
set T . We can form empirical versions of these residuals on the days when
a violation to the corresponding quantiles occurs, that is, on the days when{

xt+1 > ̂V aRt
α

}
. We will refer to these residuals as excess residuals and will

denote them by

{
rt+1 : t ∈ T, xt+1 > ̂V aRt

α

}
, where rt+1 =

xt+1 − ÊS
t

α

σt+1

where (ESt
α) is a conditional estimate of the Expected Shortfall.

In this way, under the null hypothesis that we correctly estimate the
dynamics of the loss process σ(t+1) and the first moment of the truncated
innovation distribution (E [Z |Z〉 qα (Z)]), the excess residuals should behave as
a sample of i.i.d. observations with mean zero.

To test the zero-mean hypothesis we use a bootstrap test that makes no
assumption about the distribution underlying the excess residuals. Specifically,
a two-tailed test that contrasts our null hypothesis that excess residuals have a
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mean statistically equal to zero against the alternative that such residuals have
a mean different than zero; which would mean that the conditional Expected
Shortfall was systematically underestimated or overestimated.

In essence, the bootstrap test we use consists of the following steps:

i) take the excess residuals as data;

ii) calculate the average of these data (this will be the initial value of the
test statistic: the simple average);

iii) resample various series satisfying the null hypothesis (i.e. series whose
mean does equal zero) from the original data set (i.e. the excess residuals);

iv) calculate and store the means of the resampled series;

v) compare the values of the averages of the resampled series against the
mean of the original series (the initial value of our test statistic);

vi) estimate the p-value of the test by calculating the number of times that
the resampled averages were further (either below or above) from zero than the
average of our original series: if those events represent less than 5% of the tests,
the hypothesis that the original data have average zero is rejected.

3. Results

In this section, we present the results of our application. First, we show how
our methodology works on a particular day, for both the FIX and IPC series.
Then, we present the results of the backtests used to evaluate the performance
of such methodology in our data.

In total, our series are conformed by daily observations of FIX and IPC
between January 2, 1996 and February 12, 2016. However, in the first part of
this section we will use the following sets of information:

• FIX: from February 17, 2012 to February 12, 2016.

• IPC: from September 7, 2011 to August 31, 2015.

Specifically, we will use 1,000 daily observations on the fitting of each
GARCH model. This means that we will use, approximately, 4 years of daily
information to estimate our risk measures.

The parameters of the GARCH models fitted to the data used in this
section, as well as the p-values of the corresponding statistical significance tests,
are presented in Table 2:

Table 2. Punctual Estimation and P-value of the T-statistic test of statistical

significance of GARCH(1,1) parameters for FIX and IPC series.

Table 2 shows that all the parameters of the GARCH model fitted to the IPC
series are significant. In the FIX case, only the α0 parameter is non-significant.
According to (2), this means that we use an EWMA to forecast the volatility of
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the FIX series on this particular day, while that of the IPC series is estimated
using the formula given by our GARCH specification:

FIX IPC

σt+1 =
(
λX2

t + (1 − λ)σ2
t

)1/2
σt+1 =

(
α1X

2
t + β1σ

2
t

)1/2

= α1X
2
t + (1 − α1) σ2

t = 0.0106

= 0.009782
In order to evaluate the goodness of fit of these models, we estimate their
volatility and compute the sample versions of the innovations of our series.
Specifically, if a GARCH model correctly estimates the volatility of a time
series, we expect its innovations to behave as a Strict White Noise.

The volatility estimated by the fitted GARCH models is presented in Figure
1. Once this quantity has been estimated, we obtain the sample observations of
the innovations of each model dividing each observation by the corresponding
value of the estimated volatility.

Figure 1. GARCH Estimation of FIX and IPC Volatility

For both series, we test the SWN hypothesis through graphic and numerical
tests applied to their GARCH innovations, its squares, and its absolute values.
For the first, we look at the graphs of the Autocorrelation function (ACF) and
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Partial Autocorrelation function (PACF). For the second, we apply a Ljung-Box
test.

Figure 2 presents the graphs of the ACF and PACF for both FIX and IPC
innovations. Examining Figure 2 allows us to see that there is no evidence that
FIX nor IPC innovations present a serial dependence of its lagged values. Thus,
this Figure suggests that the GARCH model achieved to estimate correctly the
volatility of both series.

Figure 2. Graphs of the ACF and PACF for both FIX and IPC innovations.

Regarding the Ljung-Box test, Table 3 summarizes the results of its application
to the GARCH innovations of the FIX and IPC series.

Table 3 shows that the hypothesis of non-correlation was not rejected for
neither of our series, in any of the nine cases considered. Therefore, Table 3
provides further evidence that the GARCH model adequately estimated the
volatility of our series.
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Table 3. P-values of the Ljung-Box Tests Applied to the
FIX and IPC Innovations

P-values of the Ljung-Box tests applied to the innovations of the GARCH(1,1) models

fitted to the FIX (upper half of the table) and IPC (bottom half of the table) series. Ljung-Box

tests were based on three differentlags (h), which are shown by column.

Given that the results contained in Figure 2 and Table 3 give us good certainty
that the GARCH model correctly estimates the volatility dynamics of our series,
we now continue with the analysis of their innovations.

Our first objective is to find a first appropriate threshold to use in the POT
Method. Thus, we use the graph of the Sample Mean Excess Function. Figure
3 shows this graph for both the IPC and FIX innovations.

Figure 3. FIX and IPC Innovation.
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Figure 3 shows a couple of potential thresholds to make a first GPD fit to
the GARCH innovations of our series. In particular, it suggests using
a threshold around 2 for the FIX innovations and one around 1 for IPC
innovations. Therefore, we fit a GPD model to the innovations series using the
suggested thresholds.9 A visual assessment of the quality of such fit is shown
in Figure 4.

Explicitly, Figure 4 contains the curves of the excess distribution (on the
left) and the tail (on the right) of the GPD model, for the FIX and IPC
innovations, with the empirical versions of such curves superimposed
respectively. Hence, this Figure let us see that the thresholds suggested by
Figure 3 allow the GPD model to achieve an excellent goodness of fit in both
series of innovations.

Figure 4. FIX and IPC Innovation.

Once we have seen that our first GPD models had a good fit to the innovation
series, we compare such fit with the one that we would get with a Gaussian
and Student-t models. The estimated parameters of the three models are
summarized in Table 4.

9 Threshold selection is a problem that typically involves the analysis of several numerical,

graphical, and model adequacy tests (e.g. investigate the stability of the form parameter of

the GPD for along a certain spectral of thresholds) that are not discussed here for briefness

reasons. We just show the results of the thresholds that best satisfied our criteria. Notwith-

standing, the interested reader can find more information about threshold selection analysis

for Mexican financial time series in Campa, M. A. (2001).
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Table 4. Models Fitted to the FIX and IPC Innovations.

Punctual estimations of the parameters of the Gaussian (first row), GPD (middle row), and

Student-t (third row) models fitted to the FIX and IPC innovations.

Figure 5 contains a graph that shows a comparison of the goodness of fit of the
three models at the (right) tail of the distributions of both innovation series.
Such Figure let us see that, in both cases, the GPD model has the best fit;
moreover, it shows us that the Student-t distribution seems to overestimate the
heaviness of the right tail of our two innovations series, whereas the Gaussian
clearly underestimates it.

Figure 5. Model Comparison for FIX and IPC Innovation
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Using the formulas given in Table 1, equation (5), the parameters in Table 3
and the selected thresholds, we can estimate VaR and Expected Shortfall for
the innovations of our series. Table 5 contains such estimations.

The quantities in Table 5 show that the monotony relationship between
the tails estimated by our three models for innovations is also present in our
risk measures estimations: The Student-t model yields the biggest estimations,
the Gaussian model the smallest ones, and those of the GPD model lie between
the former two.

Now, once we have estimated our risk measures for the innovation
distribution and forecasted the volatility of our series, we can estimate the
corresponding risk measures for our Mexican financial series. To do so, we use
the formulas given in (3) and (4).

Table 5. Risk Measures for the Innovations Series

Punctual estimations of V aRα and ESα obtained through the Gaussian, Student-t, and

GPD models fitted to the FIX and IPC innovations, for several confidence levels (α).

Table 6 contains the estimations of our conditional risk measures. Note that,
because such quantities are just an escalated version of the estimates contained
in Table 5, they present the same monotony relationship
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Table 6. Conditional Risk Measures for Mexican Financial Series.

Punctual estimations of V aRα and ESα obtained through the GARCH(1,1) models fitted

to the FIX and IPC series varyin the models (Gaussian, Student-t, and GPD) fitted to the

FIX and IPC innovations for several confidence levels (α).

With the former results ends the first part of our application. This first
approximation suggest that, among our three alternatives, the GARCH-GPD
model seems to have the best fit to the right tail of our series. More-
over, it signals that the GARCH-Student-t model might overestimate such tails,
whereas the GARCH-Gaussian model may underestimate them. Nevertheless,
in order to validate such results, we must perform a formal evaluation, which
is the purpose of the second part of this section.

Notice that in order to implement a backtest of our conditional risk
measures estimates we need to automate all the steps followed in the previous
section. This can be done easily for all such steps, except for one: the selection
of the threshold to use in the POT Method.

Indeed, in an automatized routine, it would be impossible to analyze in
each step the information given by the graph of the Sample Mean Excess
Function or any other graphical tool. Thus, for our backtest purposes, we need
an automatable algorithm to select an appropriate threshold to fit a GPD model
to the GARCH innovations of our series.

To do so, we use the second way to work with thresholds: express them as
a function of the number of observations above them. Now, it is important to
notice that Figure 5 shows that the Studet-t distribution represents, at least,
an approximation to the observed distribution of the innovations of our two
series. Thus, we can apply the results of the simulation study of McNeil, A. J.
and Frey, R. (2000) in our data.

Indeed, McNeil and Frey simulation study involved innovations series whose
distributions was well approximated by a Studet-t distribution. Therefore, given
that our data satisfy such condition, we will apply their result and assume that
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the right tail of our both innovations distributions is formed by the 10% of the
larger innovations.

To check if this approach to fit a GPD model yields good results in our
data, we make a graphical assessment. Figure 6 shows a comparison of the fit,
to the right tail of both FIX and IPC innovations distribution, of a Gaussian
model, a Student-t model and GPD model fitted following the results of McNeil
and Freys simulation study.

Examining Figure 6 we can notice that the goodness of fit achieved applying
the result of McNeil and Frey is comparable to the one we achieved analyzing the
graph of the Sample Mean Excess Function. In other words, the methodology
yields excellent results in our Mexican financial data.

Notice that the threshold selection methodology used to fit the GPD
models shown in Figure 6 can be easily automatized. Consequently, we can
now automatize all the steps needed to apply the GARCH-GPD methodology
and implement the backtests procedures described in Section 3.

To be consistent with the analysis performed in the first section, the V aRt
α

and ESt
α backtest of our application will be based on a time mobile window

of n=1,000 banking days. This means that the set of days on which we will
perform our backtests will be conformed by the daily observations of FIX and
IPC log-returns from December 29, 1999 to February 12, 2016; the information
of the days between January 2, 1996 and December 28, 1999 will be used to fit
the first GARCH(1,1) model to each series.

In this way, the backtests of our series will be carried out on a set of
m=4,060 observations and each estimation of V aRt

α and ESt
α will be done based

on approximately 4 years of daily information. Notice that the length of this
period was extended as much as possible because we will carry out evaluations
on estimates of high quantiles and expected shortfalls at considerably high
confidence levels.10

10 For instance, for the V aR0.995t we expect to see, on average, 0.005Œ4,06020 viola-

tions to such quantile. This means that we would have, approximately, just 20 observations

to perform the corresponding binomial and bootstrap tests to evaluate the quality of the

estimations of our risk measures.
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Figure 6. Model Comparison for FIX and IPC Innovations Distributions

For FIX and IPC series, Table 7 shows the results of the V aRt
α back-

tests. Specifically, Table 7 shows the p-values of the binomial tests applied to
the samples of VaR violation indicators, the number of historical and (in
parentheses) expected violations to each V aRt

α estimate. The information is
separated by confidence level and model fitted to our Mexican data.

On the other hand, Table 8 contains the results of the ESt
α backtests. Such

table shows the p-values of the zero-mean bootstrap tests applied to the excess
residuals samples. The information is classified by model fitted to the series
and the tested confidence levels.
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Table 7. V aRt
α Estimates Backtest Results.

The table shows, by model fitted to the GARCH innovations, the p-values of the binomial

tests applied to the samples of V aRt
α violation indicators, historical violations to the V aRt

α
estimates and, in parentheses, the expected V aRt

α violations by confidence level.

The results contained in Tables 7 and 8 show that the estimates of V aRt
α

and ESt
α obtained through GARCH-Gaussian and GARCH-Student-t models

present a similar behavior for the FIX and IPC series.

The GARCH-Gaussian model adequately estimates the V aRt
α only

for relatively low confidence levels (α = 0.95). This is reflected in two aspects.
The first one is a p-value greater than our significance level in the corresponding
binomial test. The second corresponds to the fact that the observed violations
to these quantiles are approximately equal to those expected.

For larger confidence levels, the V aRt
α estimates obtained through the

GARCH-Gaussian model are very poor: they strongly underestimate the true
value of both time series quantiles. This can be seen in the p-value of
the binomial test and in the high number of violations to the corresponding
quantiles. In contrast, the GARCH-Student-t model showed a clear tendency
to overestimate V aRt

α for relatively low confidence levels (α ≤ 0.99). This can
be seen in the low number of violations to these quantiles. However, for higher
confidence levels, this model provided quantiles estimates consistent with the
history of both time series.
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Table 8. Results of the ESt
α Estimates Backtest.

The table shows the p-values of the bootstrap tests applied to the residual samples of the

difference between X(t+1) and ESt
α on the days when the V aR was exceeded.

In the case of ESt
α, the GARCH-Gaussian model provides very poor estimates

for all the confidence levels considered. This is shown in the result of our
zero-mean bootstrap test: at any confidence level considered, the hypothesis
that excess residual samples have a mean statistically equal to zero is strongly
rejected.

These results, in conjunction with those of Table 7, reflect that the tail of
the conditional distribution of our Mexican financial time series is considerably
heavier than that of GARCH type models with Gaussian innovations.
Consequently, quantifying the market risk of this type of series using processes
with normal innovations (conditional normality) is a poor alternative: the
probability that they assign to extreme events turns out to be far below of what
is observed in reality.

On the other hand, the GARCH-Student-t models provided good ESt
α

estimates at high confidence levels, (α > 0.99). This is reflected in the results
of the corresponding bootstrap tests: in these cases, the hypothesis that the
excess residual samples have a mean statistically equal to zero is not rejected.

However, because these models significantly overestimated the true value
of V aRt

α for low confidence levels, the ESt
α estimates for such confidence levels

are poor, regardless of what is observed in the backtests of the ESt
α . To see

this, remember that the definition of ESt
α is “the expected loss when V aRt

α
is exceeded”; therefore, an estimation error in V aRt

α immediately affects any
estimate of ESt

α .

Finally, our backtests reveal that the GARCH-GPD model was the only
one capable of delivering V aRt

α and ESt
α estimates consistent with what was

historically observed in both time series, for all the confidence levels considered.
This can be seen in the results of the binomial and bootstrap test: in all cases,
the binomial behavior and zero-mean hypothesis were not rejected.
In consequence, this model was the only one able to properly estimate the
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heaviness of the right tail of the conditional loss distribution of both Mexican
time series.

4. Conclusions

Our work shows that the GARCH-GPD model was the only one capable of
delivering V aRt

α and ESt
α estimates consistent with the history of both time

series, for all confidence levels considered. This means that this model was the
only one that properly estimated the heaviness of the right tail of the conditional
loss distribution of both Mexican time series.

This is particularly relevant in the case of Expected Shortfall: through the
applied zero mean bootstrap tests, our paper presents the first piece of evidence
of this kind that points that the GARCH-GPD model satisfactorily estimates
such risk measure, at high confidence levels, for financial Mexican financial
time series. Moreover, our analysis also revealed that the GARCH-Normal (for
any confidence level) and GARCH-Student-t (for confidence levels below 99%)
models perform poorly when estimating such risk measure in Mexican series.

In addition, our two case studies showed that the GARCH-GPD hybrid
model is able to provide reasonable estimates of V aRt

α and ESt
α both in times

of crisis, where large-scale losses occur in clusters over a considerable period of
time, and in times of relative calm in the markets.

Indeed, our backtests length was large enough to test the GARCH-GPD
model in both scenarios. Specifically, they contained in full the 2008 financial
crisis and the high volatility period in the FIX Exchange Rate presented in late
2015 and early 2016 (which was strongly related to the worldwide drop in oil
prices in that period and to the uncertainty about the monetary policy decision
of USAs central bank).

Regarding similar studies on the subject, our results on V aRt
α and ESt

α
estimates consistent with the history of both time series, for all confidence levels
considered. This means that this model was the only one estimates obtained
from a GARCH-GPD model are in accordance with what Kourouma, L. et al.

(2011) (for α ∈ 0.95, 0.99, 0.995), Fernández, V. P. (2003) (for α ∈ 0.99, 0.995),
and Aguirre, A. I. et al. (2013) (for α = 0.95) found in their respective analyses.
However, focusing on relative small confidence levels (α = 0.95), they contrast
with the particular finding of Fernández, V. P. (2003), who found that the
GARCH-GPD model might yield poor V aRt

α estimates.

For Expected Shortfall, our findings contrast with those of Kourouma, L.
et al. (2011) in the international landscape, whose tests suggest that estimates
of ESt

α based on a GARCH-GPD might overestimate the value of such risk
measure.

In general, the success of the GARCH-GPD model both in times of high
volatility and in those of relative calm may be attributed to the flexibility of
the GPD to model the tail of a distribution: through the sign and magnitude
of its shape parameter, it can appropriately model heavy, lightweight and even
short tails.

In this way, the above characteristic allows the GARCH-GPD model to
adjust properly and timely its estimate of the heaviness of the tail of the
innovation distribution. Moreover, this feature in the model seems to end up
having the same effect on the tail of the conditional loss distribution. In other
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words, the GPD gives the model sufficient flexibility to adapt to periods
where both large (associated with higher magnitude innovations) and moderate
(coupled with rather modest innovations) losses occur.

On the other hand, our work also confirmed that the method to select an
optimal backtests threshold given by the simulation study proposed by McNeil,
A. J. and Frey, R. (2000) is applicable to Mexican financial time series. This
reveals an interesting empirical fact present in Mexican financial series: when
filtering their volatility through a GARCH model, it is possible to consider
that the tail of the innovation distribution associated with such model is
constituted by, approximately, the largest 10% observations of the sample of
such innovations.

The facts that: i) the GARCH-GPD model makes up a good tool to
quantify the market risk in Mexican financial series; and ii) that such model has
shown a better performance than the GARCH-Normal and GARCH-Student-t;
have important implications for financial institutions with exposure to Mexican
series: it yields a methodology that could make their market risk estimates
more accurate. That is, a methodology that could make its regulatory capital
closer to its economic capital.

However, the results presented in this paper are only a first step to verify
that such an objective is achievable through this methodology. Indeed, further
analysis of the effectiveness of this model to describe of Mexican series returns
should be made in the future. In particular, one could investigate if the results
found in our application hold for Mexican financial returns of lower frequencies,
such as 5 or 10 days. This mainly stems from the fact that the Basel Committee
requires banks to calculate market risk capital requirements based on their 10-
Day VaR, at 99% confidence.

Thus, an analysis as the one proposed would make possible to know whether
Mexican banks would have enough incentives to follow to best practices
in market risk management: one could calculate directly the capital
requirements that institutions must satisfy and investigate their behavior under
a risk-sensitive methodology, such as the one used in this paper.

Nevertheless, when performing an exercise as the described above, one
should not overlook the Expected Shortfall. In the future, banking institutions
capital requirements may become more dependent on such risk measure, as set
out in the document Minimum Capital Requirements for Market Risk, published
by the Basel Committee in January 2016.11

Additionally, future studies should explore the behavior of market risk
measures for Mexican series in a multivariate context. That is, they must take
into account the dependence between several returns of Mexican assets: in both
the short and long terms.

In this regard, it is our believe that such an analysis should also be based
on EVT: traditional dependence measures, such as the Pearson correlation
coefficient, are based on deviations from the mean and give the same weight
to extreme observations than to the rest of them. Moreover, most of
such dependence measures only consider linear dependence between random
variables.

11 Such document is available at http://www.bis.org/bcbs/publ/d352.pdf.
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Instead, the dependence analysis of this class of data could be based on the
use of copulas. In particular, one could investigate which copula allows a better
estimation of conditional risk measures for a portfolio composed by the series
used in this paper (or other Mexican series), when its marginal distributions are
modeled, in each period, by a GARCH-GPD model (or another more general
model that adequately models such distributions).

An analysis like the previous one should also be executed in Mexican series
of returns of different frequencies, like 1, 5 or 10 banking days. The latter
case could investigate the behavior of the market risk capital requirements of a
financial institution in a more realistic context.
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