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Abstract 

This paper is concerned with a special case of stochastic linear regula.tor that a.rises in optima! 

production pla.nning in monopoly pricing. The state process consists of the inventory leve! a.nd 
the dema.nd ra.te (the la.tter ta.ken as given). The inventory leve! involves both the production 

ra.te (control varia.ble) a.nd the dema.nd ra.te . Severa! stochastic models for the dema.nd a.re 

proposed a.nd discussed. The sta.te equa.tion is a linear controlled stochastic equa.tion driven 
by a Brownia.n motion. Costs a.re assumed to be qua.dra.tic a.nd the LQG (Linear-Qua.dra.tic­
Ga.ussia.n) a.pproach is used to cha.ra.cterize optima! production-inventory policies. Fina.lly, 

when possible, closed-form solutions a.re provided, otherwise approxima.te solutions a.re faund 

by means of discrete-time linear systems. 

Resumen 

Este a rtículo se refiere a un caso especial de regulador lineal estocá.stico que surge en la 
pla.nea.ción óptima de la producción en merca.dos monopólicos. El proceso de esta.do consiste 

en el nivel del inventario y la demanda. (ésta última toma.da. como da.da). A su vez, el nivel 
del inventario considera. la producción (varia.ble del control) y la demanda.. Varios modelos 

estocá.sticos del comporta.miento de la demanda. se proponen y se discuten. La ecuación de 

esta.do es una ecuación linea l estocá.stica controla.da., la cual es conducida por un movimiento 

Brownia.no. Los costos se suponen cuadráticos y el modelo LQG (Linea.r-Quadra.tic-Ga.ussia.n) 

se utiliza. para cara.eterizar las políticas óptimas de producción-inventario. Finalmente, se 

proporcionan soluciones analíticas cuando sea posible. En caso contrario, se proporcionan 
soluciones aproxima.das a través del uso de sistemas linea.les discretos. 
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l. Introduction 

Determining production-inventory policies that provide minimum costs when 
a stochastic demand is taken as given, is of great importance in studying 
monopoly pricing. The literature regarding this field is scarce because of the 
presence of randomness, which introduces technical complexities. In this paper, 
the demand is assumed to be driven by a continuous Markovian processes with 
continuous paths ( diffusion Markovian processes) 1 . Once a quadratic functional 
expressing production and inventory costs has been defined, the LQG approach 
is then used to characterize optima! production-inventory policies. Closed-form 
ancl approximate solutions, for severa! stochastic demand models taken as given, 
are found 2 . 

This paper is organized as follows . In section 2, we propose severa! stochas­
tic models for the demand. Under this framework, we study an oligopoly mar­
ket with severa! plants operating jointly. In section 3, we present a family of 
quadratic functionals expressing the inventory and production costs. It is here 
where the LQG approach is used to characterize optima! solutions. Through 
section 4, we provide closed-form and approximate solutions. Finally, in section 
5, we give a set of comments and remarks, as well as delimitations of the results 
obtained. 

2. Basic Demand Models 

The following models take into account the procluction of a single good and 
finite horizon. The multidimensional case for the production of severa! goods 
with independent demands will be treated later through subsections 2.3 and 
2.4. The starting point of our analysis is the so-called balance equation: 

u[I(t) - io] = 1t[(uU(s) + µ) - X(s)]ds, (2.1) 

with the conditions X(O) = x 0 , I(O) = i 0 , X(t) 2: µ , O:::; t:::; T. Here, X(t) 
is the rate of demand at time t; µ (the physical drift) is mean expected rate 
of demand ; u is the constant diffusion coefficient or instantaneous volatility; 
uU(t) + µ is the rate of production, scaled by u , at time t, which is seen as a 
control function; and u I ( t) is the leve! of inventory at time t, scaled by u, too. 

2.1 First-Order Demand Models 

We first assume that the demand, X ( t), satisfies the first order stochastic dif­
ferential equation of exponential growth (ej. Bensoussan et al. 1984). 

(
X (t) - µ) (X(t) - µ) 

el u =-a u dt + dZ(t), O:::; t:::; T, X(O) = x o, (2 .2) 

1 Problems in which the supply has random disturbances, for instance, the determination 
of optima! operation policies in dams, are studied in Hernández (1987), Pliska (1975), and 

Bather (1968). 
2 As related references for the LQG approach we may mention, for instance: Arnold 

(1982) , Elliott (1982), Bensoussan (1982), and Fleming and Rishel (1975). 
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where a is a constant different from zero and Z(t) ,...., N(O , dt) is a standard 
Wiener process (standard Brownian motion, the continuous time version of a 
random walk) . It is through the constant a that it is possible to model a 
demand trend, increasing, for -a > O, or decreasing, for - a < O. The term 
dZ(t) appearing in (2.2) produces an effect of stochastic disturbances in the 
behavior of the demand. We may think of X (t) - µ. in (2.2) as a process with 
average growth rate -a and variance u 2 . By applying elementary stochastic 
calculus, it can be readily shown that the solution of (2.2) is given by 

X(t) = µ + e-ªt(xo - µ) + 1t e-a(t - s)udZ(s). 

Notice now that equations (2.1) and (2.2) can be written together in matrix 
formas 

dY(t) = [AY(t) + BV(t)]dt + CdZ(t), Y(O) =Yo, (2.3) 

by setting 

(
X(t) -µ ) ( O ) (-a O) Y(t) = ul(t) ' V(t) = U(t) ' A= -1 O ' 

B = ( ~ ~) , C = ( ~) , Yo = ( x:~ µ) . 
Equation (2.3) is known as the equation of evolution of the linear regulator (see, 
for instance, Fleming and Rishel , 1975). This equation plays an important role 
in many practica! situations, mainly, in finance and economics. 

2.2 Second-Order Demand Models 

If we have an occurrence frequency between periods of high and low demand in 
[O , T], then we may assume that the demand X (t) satisfies the following second­
order stochastic differential equa tion ( the stochastic harmonic oscillator): 

- = -a + -- O < t < T d
2 

(X(t)-µ) (X(t)-µ) dZ(t) 
dt 2 (}" (}" dt ' - - ' 

(2.4) 

with initial conditions X (O) = xo, and .i (O) = fo. Here, the trend a is a positive 
constant. The other constants µ and u are taken again as in equation(2.l). We 
warn the reader about the term dZ (t)/dt in the above expression , this derivative 
<loes not exist and should be adequately interpreted as stochastic disturbances. 
By using elementary stochastic calculus, it can be shown that 

X(t) = µ + 1t e-ª8 (xo - µ)ds + 1t 1u e-a(u-s)udZ(s)du 

is solution of (2.4). Notice that, with a suitable change of variable, equation 
(2.4) can be writen as 

{ 

d(X(t) - µ) = uL(t)dt , 

duL(t) = - a(X(t) - µ)dt + udZ(t), 

X(O) = x o, L(O) = (1 / u)fo . 

(2.5) 
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In this case, equations (2.1) and (2.5) may be set in similar form to (2.3) , by 
taking 

(
X (t)-µ ) ( O ) Y(t) = al(t) , V(t) = U(t) , 
aL~) O 

A= (~1 ~ 
- a O 

Suppose now that both frequency and demand decrease in time, then we 
may assume that the demand satisfies the equation for the stochastic damped 
oscillator: 

~ (X(t) - µ) =-e~ (X(t) - µ)-a (X(t) - µ) + dZ(t) , (2.6) 
dt 2 a dt a a dt 

with conditions X (O) = x 0 and X (O) = fo . Here, e is a positive constant. In 
this case, taking the same change of variable as in (2.5), we get the following 
expression: 

{ 

d(X(t) - µ) = aL(t)dt, 

daL(t) = - caL(t)dt - a(X(t) - µ)dt + adZ(t), 

X(O) = xo, L(O) = (1/a)fo. 

(2.7) 

For this model, instead of having the mat rix A, given befo re, we now ha ve the 
matrix 

Ao~ U: ~ iJ. 
We shall refer in what follows to (2.4) as the second-order model for A, and to 
(2 .6) as the second-order model for A 0 . 

Finally, we present a model for coupled demands X 1 (t) and X2(t),. both 
following second-order models, by assuming they satisfy the system: 
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with initial conditions X1(0) = x 1,o, X2(0) = x2,o, .,Y1(0) = 6,o, X2(0) = 6,o ­
The constants a, a1, a2 and (3 are all positive. Moreover, the constant (3 is 
a technical coefficient that may be interpreted as the number of units of X 1 
required to make a unit of X2. The procesess Z1(t) and Z 2 (t) are assumed to 
be independent. We may obtain a similar equation to that of (2.3) by setting 

do-1I1(t) = [o-1U1(t) - (X1(t) - µl)]dt, X1(t);::: µ1, 

do-2I2(t) = [o-2U2(t) - (X2(t) - µz)Jdt, X2(t);::: µz , 

d(X1(t) - µ1) = o-1L1(t)dt, 

d(X2(t) - µ2) = o-2L2(t)dt, 

do-10-2L1(t) =-(a+ a1)0-2(X 1(t) - µl)dt + aa1f3(X2(t) - µ.z)dt 

+ a1a2dZ1(t) , 

do-10-2L2(t) =-(a+ a2)0-1(X2(t) - µ.z)dt + ao-2f3-1(X1(t) - µl)dt 

+ o-10-2dZ2(t), 

Xk(O) = xk ,o, h(O) = ik ,o, Lk(O) = (l/o-k)~k ,o, k =O, 1, 

and choosing 

X1(t) - µ1 o x1,o - µ.1 
X2(t)-µ2 o x2 ,o - µ.z 

Y(t) = 
o-1fi(t) V(t) = 

U1 (t ) 
Yo= 

0-1 il ,O 
a2I2(t) 

, 
U2(t) 

, 
a 2i2,o 

a1a2L1(t) o a26,o 
0-1 o-2L2 ( t) o 0-1.;2 ,o 

o o o o - 1 
C7 2 o 

o o o o o - 1 
ª1 

A= 
-1 o o o o o 
o - 1 o o o o 

-(a + a1)0-2 ao-1(3 o o o o 
aa2f3 - 1 -(a+ a2)0-1 o o o o 

B a matrix with entries B33 = o- 1 , B 44 = o-2, Bij = O, otherwise, and C a 
matrix with entries C51 = o-1a2, C52 = 0-10-2, Cij =O, otherwise . In this case, 
Z(t) is a vector of independent Wiener processes, containing as the first two 
components Z1(t) and Z2(t). 

2.3 A Monopoly Mode l with P roduction Plants Operating Joint ly 

For the sake of simplicity, we first consider only two plants operating jointly; the 
ideas involved in the proposed model can be easily extended to more plants. 
Assume that plants P1 and P2 produce the same generic good, and that P 1 
has greater capability of production than P 2. Suppose also that from the total 
production of P1 , U1(t) , a constant proportion, say (1 - a)U1(t) , for a fixed 
a E (O, 1) , is transfered to plant P2 , so that the latter is able to satisfy its 
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demand. If X 1(t) and X 2(t) stand for the demands at each plant . Then the 
balance equations turn out to be: 

{ 

dcr1Ji(t) = [aiaU1(t) - (X1(t) - µl) ]dt , X1(t) 2: µ.1, 

dcr2h(t) = {a2 [(l - a)U1(t) + U2(t )] - .(X2(t) - µ2)}.dt, 

X1(0) = x1 ,o, X2(0) = x2 ,o, 11(0) = il,o, 12(0) = i2 ,0· 
(2.8 ) 

Assuming now that X 1(t) and X 2(t) are independent processes and that, for 
instance, they both follow a first-order model with coefficients a and b, respec­
tively, then taking 

C'(t) -"') 
V(t) ~ ( U~ (t} ea o o 

!). Y(t) = X2(t) - µ.2 ' A= 
- b o 

cr1l1(t), -1 o o 
cr2l2(t) U2(t) o -1 o 

B~ (! o o 

º) e o 
o º) o o ~ , e = ~ cr2 o o 

o acr1 o o o ' 
o (1 - a)cr2 cr2 O o o o 

Cº-"') x2 o - µ 2 
Yo = ' . , 

cr1i1 ,o 
cr2i2 ,o 

we get a similar expression to (2 .3) with Z(t) = [Z1(t), Z2(t) , Z3(t) , Z4(t)] ' , (an 
apostrophe will denote the transpose operation), is a vector of independent 
Wiener processes. The processes Z3(t) and Z4(t ) have been merely introduced 
for teéhnical convenience. 

The previous arguments have been applied when both plants produce the 
same good. However, when the plants produce different goods, say, 91 and 
92, so that 91 is required to produce 92, then we just need to multiply the 
transfered quantity by a technical coefficient f3 to transform units of 91 into units 
of 92 · Thus, either assuming that the transformed production, /3(1 - a)U1(t ) , 
is additional to sorne production U2(t), which is obtained by P2 without using 
resources from P 1, we have that the balance equation for P2 is 

or assuming that all the production of P 2 is the transformed production, then 
the balance equation for P 2 simple becomes 
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2.4 Multi-dimensional Demand Models 

Considera demand vector for n goods, say, X(t) = [X1 (t),X2(t), ... ,Xn(t)] 1
, 

which consists of independent components. In this case, the system of balance 
equations and the multivariate first-order model have the following extensions: 

{ 

d~J(t) = [~U(t) - (X(t) - µ)]dt, 

d(X(t) - µ) = -A(X(t) - µ) + ~dZ(t), 
X(O) = xo, I(O) = io, 

(2.9) 

where ~ = [ui]f=l > CTi > O, i = 1, 2, ... , n, and A= [>.i];';,,1, Ai #-O, i = 1, 2, ... , n, 
are diagonal matrices; Z ( t) is a random vector containing independent \Viener 
processes; ~U ( t) + µ. is the vector of scaled productions; and ~J( t) is the vector 
of scaled inventories. The ( unique) solution, in vector form, of the stochastic 
differential equation in (2.9) is given by 

X(t) = µ. + e-At(xo - µ) + lat e-A(t-s) ~ dZ(s). 

According to the extension of (2.3) to the multidimensional case, we have that 
the dimension of the corresponding vector Y (t) = [X (t) - µ., ~J(t)]' is 2n. The 
corresponding matrices A, B, and C follow a similar pattern to that of the 
matrices from subsection 2.3. 

The analyses for the case in which the demand model is of second order, and 
even the mixed case (first and second-order models interacting) have no essential 
differences from the analysis done befare, since components are individually 
treated. 

3. Quadratic Cost Functionals: LQG Theory 

Next, we introduce a family of quadratic functionals to evaluate the total cost 
of production and inventory, when an initial condition Y(t) = y is given and 
a control (production) function V (y, t) is used. The family of functionals with 
which we shall be concerned, {Jfa,q,)w.}, is a function ofmatrices P, Q and M, 
where P and M are both symmetric positive semidefinite, and Q is symmetric 
positive definite. These matrices keep technical coefficients for costs. In prac­
tice, very often, these costs have a quadratic behavior, ( e.g. costs of generation 
of electric energy), being proportional to the functional 

Jfa,q ,M(y, T - t) =E { ¡T [(Y(s), PY(s)) + (V(s), QV(s))] ds l S'yy} 

+ (Y(T), MY(T)), (3.1) 

where 

Y (s) = Yo+ las [AY(u) + BV(u)]du +las CdZ(u), 
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here, (·, ·) is the usual inner product in the Euclidean space lRn, C:Sy,V denotes 
the sets {Y (t) = y is given, and the control V (y, t) is used} , and (Y (T), MY (T)) 
is a terminal cost. 

We notice that the integral in (3.1) takes a stochastic behavior beca use 
of its relation with the linear regulator. From now on, we shall leave out the 
subindexes P, Q and M, and denote T = T - t = "time to go" , O :S T :S T (so 
t ="absolute time"). The LQG approach characterizes V*(y , t) , so that 

V * V J (y' T) = J (y' T) = min J (y' T)' 
V (y,s) 
t ::=; s$T 

(3.2) 

where the mínimum is taken over a l! admissible controls V (y, s) in [t , T] (v.g . 
controls satisfying Lipschitz conditions uniformly in the variable y). Therefore, 
the LQG approach leads us to 

(3 .3) 

where S* ( T) is a symmetric positive definite matrix which sol ves 

with the condition S(O) = M. Equation (3.4) is known as the Ricatti differential 
equation, which may be seen as the adjoin equation of the optima! trajectory 
S(T). A meaningful fact about this equation is that, under very general condi­
tions, is that it has a bounded solution on any finite interval (see, for instance, 
Fleming and Rishel, 1975). 

4. Optimal Characterization of Production-lnventory Policies 

In this section, as immediate consequence of (3.3), we shall characterize optima! 
production-inventory policies for the discussed models, when the cost technical 
coefficients for P, Q, and M do not include crossed terms, that is, when Q = 
M = I and P is a diagonal matrix with non-negative terms. When P, Q and 
M are arbitrary diagonal matrices, the analysis will be basically the same. The 
general case, when P, Q and M are taken as in (3 .1), will just take a little more 
of effort, making the notation cumbersome. 

4.1 Optimal Production-Inventory Policies for the First-Order De­
mand Model 

For the first-order model introduced in subsection 2.1, if we take Q = M = I 
and P22 = 1, Pij = O, otherwise, it follows that the optima! control satisfies 
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where 821 ( T) and 822 ( T) are SO!utions OÍ the system OÍ differentiai equations 

{ 

ddr 821(r) =- [a + a 2822(r)]821(r) - 822(r), 

d 2 2 ( 4.1) 
-822(r) = 1- a 822(r), 822(0) = 1, 821(0) =O. 
dr 

The solution of system (4.1), provided a I= 1, is given by 

{ 

* 1 [(l+a)(l-a)-le2ar_l] 
822(r) = -;; (1 + a)(l - a)-le2ar + 1 , 

( 4.2) 

82'1(r) = -17 

82'2(s}exp {- a(r - s) - [Q(r) - Q(s)]} ds, 

where 

( 4.3) 

When a = - 1, we get 822(r) = - l. In this case, 821(r) = (1 - a) - 1(1 -
e-r(l-a)) for a f= 1, and 821(r) = -T for a= l. 

We may provide an approximate solution for 821 ( T ), when T is small, as 
follows: observe that , if T is small , so is T - s , since O ::; s ::; T. Therefore, 
Q ( r )-Q ( s) ~ Q' ( r) ( r-s), then, for small r, we may well use the approximation 

82'1(r) ~ - lar 82'2(s)e-{r-s)[a+a2s;2 (r)]ds. 

4.2 Optimal Production-lnventory Policies for the Second-Order De­
mand Models 

When the demand follows the second-order model for A , Q = M = 1 and 
P22 = 1, Pij = O, otherwise, the optima! control has the form 

U*(y , t) = -a[821(r)y1 + 822(r)y2 + 82'3(r)y3], Y(t) =y, r = T - t, (4.4) 

where 822(r) is taken again as in (4.2), and (821(r),823(r)) is solution of the 
system 

¡ ~821(r) = -[1 + a 2821(r)J822(r) - a823(r) , 
dt 

:t 823(r) = 821(r) - a 2822(r)823(r), 

821 (O) = 823(0) = O. 

( 4.5) 

If we suppose a parameter value a = 1, the joint solution of ( 4.5) turns out to 
be (see, for instance, Hirsh 1974, ch. 5) : 

{ 

821 (r) = -1: 822(s) e-[Q(r)-Q(s)J cos(r - s ) ds, 

82'3(r) = - la 82'2(s) e-[Q(r)-Q(s)] sin(r - s ) ds, 
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where we have taken Q(T) as in (4.3). Approximate solutions for S21(T) and 
S 23 (T), when T is small, can be found by using sin(T-s) ~ T-s and cos(T-s) ~ 
1- (1/2)(7 - s) 2 , so 

{ 

S21(T) ~ -1: S22(s) e-(r-s)"
28

;2(r) [1- ~(T - s) 2] ds, 

S23(T) ~ -1 S22(s) e-(r-s)"
28

;2(r)(T - s) ds. 

Next, we shall provide approximate solutions for the second-order model for 
Ao, the optima! control also satisfies (4.4), but [S21(T), S22(T), S23(T)] are now 
solutions of the system 

where 

H*(T) = (-(J"2~22(T) 

and S22 ( T) is taken as in ( 4.2). 

( 4.6) 

In order to obtain approximate solutions of ( 4.6), we proceed to apply 
Euler's method, getting the following discrete-time linear system: 

where T¡,, = kf¡, k =O, 1, 2, ... , N, and the matrix H*(Tk) is given by 

The solution of ( 4. 7) is found as 

-f¡ ~ [(f¡H*(Tk) + J) · · · (f¡H*(Ti+l) + J )] ( S22~7i)). 
Finally, we consider the model for coupled demands when Q = M = I and 
P33 = P44 = 1, Pij = O, otherwise. In this case, the optima! controls are given 
by 

4 

U{(y, t) = -0"1 L Sjj(T)Yj, 
j=l 

4 

u;(y, t) = -u2 L s4j(T)Yj, 
j=l 
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where Y(t) = y and 7 = T - t. Here, [8jjJJ=1 and [84jJ1=1 are the joint 
solution of the system of differential equations, which, for convenience, has 
been separated into three groups of equations, as follows: 

~833(7) = 1- crÍ8~3 (7) - cr~8l3 (7), d7 

~844( 7) = 1 - crÍ 8l3( 7) - cr~8l4( 7 ), 
d7 
d 2 2 -843(7) = -cr1843(7)833(7) - cr2844(7)S43 (7) , 

d7 

~831(7) = -833(7) - (a+ a1)cr2835(7) + acr2f3-1835(7) - crÍ831(7)833(7) 
d7 

- cr~841(7)843(7) , 

d 2 
-832(7) = -834(7) + acr1f3835(7) - (a+ a2)cr1835(7) - cr1832(7)833(7) 
d7 

- cr~842(7)843(7), 

~835 (7) = cr21831(7) - crÍ833(7)835(7) - cr~845(7)843(7), 
d7 

:
7 

835(7) = cr11832(7) - crÍ835(7)833(7) - cr~845(7)843(7), 

~841(7) = -834(7) - (a+ a1)cr2845(7) + acr2f3-1845(7) - crÍ831(7)834(7) 
d7 

- cr~841(7)844(7), 

d 2 
-842(7) = -844(7) - acr2f3845(7) - (a+ a2)cr1845(7) - cr1832(7)834(7) 
d7 

- cr~842(7)844(7), 

~845(7) = cr21841(7) - crÍ835(7)S34(7) - cr~845(7)844(7), 
d7 

~845(7) = cr11842(7) - crÍ835(7)834(7) - cr~845(7)844(7) , 
d7 

with the conditions 833(0) = 844(0) = 1, and 831(0) = 832(0) = 841(0) = 
842(0) = 843(0) = O. We shall provide solutions when cr1 = cr2 = cr. In this 
case, 8 33 = 8 44 , and the first three-equation group becomes 

from where 
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so that, 833 + 834 = 833 - 834, therefore 834 = o and so 833 and 844 both 
coincide with 822 in ( 4.2). The second four-equation group may be writen now 
as 

( 4.8) 

where 

By applying Euler's method to ( 4.8), we obtain the following discrete-time 
linear system, with Tk = k(T / N) , k =O, 1, 2, ... , N: 

The solutions of (4.9) is 

k 

-f¡ L{ [f¡(K - a
28j3(Tk)I) + I] · · · [f¡ (K - a 28 j3 (Ti+1 )I) + I]} 8j3(Ti)e1 

i=l 

where e¡ = [1, O, O, O]'. The third four-equation group can be similarly treated. 

4.3 Optimal Production-Inventory Policies far the Model of Plants 
Operating J ointly 

For the monopoly model with plants operating jointly, we have that the optima! 
controls, provided Q = !VI = 1 and P33 = P44 = 1, Pij = O, otherwise, satisfy 

uny, t) ~ - [ ""' t, s;,(r)y; + (! - o)u, t, s;,(r)y;] , 

4 

u;(y, t) = -a2 L 3¡i(T)Yj , 
j=l 

(4.10) 
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where Y (t) =::y and T = T - t . In this case, [83j]J=1 and [8;jj]J=1 are the joint 
solution of the following differential equation system (which has been separated 
in to three groups of equations) 

d 2 2 2 ( -833(T) = 1- a 0"18 33 (T) - 2a 1- a)0"10"2834(T)833(T) 
dT 

- [a(a - 2) + 2j0"~8§4 (T), 
d 2 2 2 ( -844(T) = 1- a 0" 18 34 (T) - 2a 1- a)0"10"2844(T)834(T) 

dT 
- [a(a - 2) + 2]0"~8l4 (T), 

~834(T) = -a20"Í834(T)833(T) - a(l - a)0"10"2[844(T)833(T) + 8§4(T) j 
dT 

- [a(a - 2) + 2j0"~844(T)834(T), 

~813(T) = -a813(T) - 833(T) - a 20"Í833(T)813(T) 
dT 

- a(l - a)0"10"2[834(T)813(T) + 833(T)814(T)] 

- [a(a - 2) + 2j0"~814(T)834(T) , 

~814(T) = -a814(T) - 834(T) - a 20"Í834(T)813(T) 
dT 

- a(l - a)0"10"2[844(T)813(T) + 834(T)814(T)] 

- [a(a - 2) + 2]0"~844(T)814(T), 

d 2 2 
-823(T) = -b823(T) - 834(T) - a 0"1833(T)823(T) 
dT 

- a(l - a)0"10"2[834(T)823(T) + 833(T)824(T)] 

- [a(a - 2) + 2j0"~834(T)824(T), 

d 2 2 -824(T) = -b824(T) - 844(T) - a 0"1834(T)823(T) 
dT 

- a(l - a)0"10"2[844(T)823(T) + 834(T)824(T)] 

- [a(a - 2) + 2j0"~844(T)824(T), 

with the conditions 833(0) = 844(0) = 1, and 814(0) = 824(0) = 834(0) = 
813(0) = 823(0) = O. We shall provide solutions [83j]J=1, [8;jj]J=1, in the 
particular case, for which 

a 20"Í = q, and, O"~= q[(l - a) 2 + 1]-1, 0"1, 0"2 >O, O< a< 1, 

hold for sorne q > O. Then, for the first three-equation group, 833 = 844 on 
[O , T] , having instead of three equations, just the following two: 

{ 

~833(T) = 1 - q[8§3(T) + 8§4(T)] -
2
q(l - a) 833(T)834(T) , 

dT J(l-a)2+1 
( 4.11) 

d q(l - a) 2 2 
-834(T) = - [833(T) + 834(T)] - 2q833(T)834(T), 
dT J(l-a)2 +1 
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If we denote CJ = q - [q(l - a)/ J(l - a) 2 + 1], then from (4.11), we have 

if now Cf = q + [q(l - a)/ J(l - a) 2 + 1], then from (4.11), we may also write 

Setting F1(T) = 833(T) + 834(T) and Fo(T) = 833(T) - 834(T), we obtain from 
(4.12) and (4.13) that 

:t Fk(T) = C~ [ *- Ff(T)], Fk(O) = 1, k = 0, l. (4.14) 

The solutions of (4.14) are found as 

from which 

Now, define a matrix H*(T;c), for e= a,b, with entries 

{ 

* ( ) * ( ) * ( ) q(l - a) * ( ) H 11 T;c =H22 T;c =-c-q833 T - 834 T, 
J(l - a) 2 + 1 

* ( ) * ( ) q(l - a) * ( ) * ( ) H 12 T;c =H21 T;c =- 833 T -q834 T, 
J(1-a) 2 +1 

so that 

( 4.15) 

and 

~ (823(T)) = H*(T; b) (823(T)) _ (8~4(T)). (4.l 6) 
dt 824(7) 824(7) 844(T) 

Also, define the functions 
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l'hen, the solutions of (4.15) and (4.16) are found as 

s;3(T) = 1T S34(s) e-[Q*(r;a)-Q*(s;a)] sinh[R*(T;a) - R*(s;a)] ds 

-17 

S;33(s) e-[Q*(r;a)-Q*(s;a)] cosh[R*(7;a) - R*(s;a)] ds, 

s;4(T) = 1T S33(s) e-[Q*(r;a)-Q*(s;a)] sinh[R*(7;a) - R*(s;a)] ds 

-17 

S;34(s) e-[Q*(r ;a)-Q*(s;a)] cosh[R*(7;a) - R*(s;a)] ds, 

s;3(7) = 1T s¡4(s) e-[Q*(r;b)-Q*(s;b)] sinh[R*(7; b) - R*(s; b)] ds 

-17 

S34(s) e- [Q*(r;b)-Q*(s ;b)] cosh[R*(T; b) - R*(s ; b)] ds, 

s;4(T) = 1T S34(s) e-[Q*(r;b)-Q*(s;b)Jsinh[R*(T;b)- R*(s;b)] ds 

-17 

s¡4(s) e-[Q*(r;b)-Q*(s;b)J cosh[R*(T; b) - R*(s; b)] ds. 

For small T we may provide approximations, using the following set of relations: 

¡ (i) 

( ii) 

( iii) 

( iv) 

Q*(T;c) - Q*(s;c) ~ -H;1 (T;c)(7 - s), e= a,b, 

sinh[R*(7; e) - R*(s; e)]~ R*(T; e) - R*(s; e), e= a, b, 

cosh[R*(T;c) - R*(s;c)] ~ 1 + ~[R*(T;c)- R*(s;c)] 2, e= a,b, 

R*(T;c) - R*(s;c) ~ -H;2(T;c)(T- s), e= a,b. 

Applying (i) - (iv), we may obtain an approximation, for instance, to Si3, as 
follows: 

s;3(7) ~ -17 

S34(s) eH;i(T;a)(r-s) H;2(T; a)(T - s) ds 

-1T S;33(s)eH;1(r;a)(r-s){l + HH;2(T;a)(T - s)]2}ds . 

5. Summary and Conclusions 

For a number of stochastic demand models, when production and inventory 
costs are quadratic, we have provided via the LQG approach, closed-form and 
approximate solutions for optima! production-inventory policies in a dynamic 
monopoly model. We found the following delimitations of our work: more 
work has to be done for multidimensional models when the demand vector 
consists of dependent components. The assumption about admissible controls 
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to be Lipschitz continuous in the initial state rules out "bang-bang" controls. 
No lower limit far the inventory leve! and the production rate are assumed. 
Finally, A, B , C, P, Q and M are all time-invariant matrices. 
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