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In this paper, we extend the stochastic quasigradient method when there is prior information 

on the region where descent directions are likely to be found . Our extension uses maximum 
entropy and minimum cross-entropy subgradient estimators that incorporate prior informa­
tion in the form of expectations. We also analyze a number of prior information patterns and 

provide the convergence conditions for the proposed method. Finally, we obtain a limiting 

distribution representation for the expected information, which is provided by the sequence 
of subgradient estimators generated by the proposed method. 

Resumen 

En este trabajo, se extiende el método de cuasi-gradiente estocástico cuando hay información 

a priori sobre la región en donde es probable encontrar direcciones descendE¡ntes. Nuestra 
extensión utiliza los estimadores de subgradiente de máxima entropía y de n'iínima entropía 
cruzada que incorporan la información a priori en la forma de valones esperados. Asimismo, 

analizamos varios patrones información a priori y proporcionamos ras condiciones de la con­

vergencia para el método propuesto. Por último, obtenemos una representación de la dis­
tribuciórt límite para la información esperada, la cual es proporcionada por una sucesión de 

estimadores d~ los subgradientes generados por el método propuesto. 
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l. Introduction 

There is a wide range of mathematical programming problems that can be nei­
ther solved nor analyzed by using deterministic optimization techniques. For 
instance, when the objective function and/or the constraints are not differen­
tiable, then stochastic algorithms that use statistical estimators of the subgra­
dients can be more flexible and effective. Most of the deterministic optimization 
algorithms are myopic in the sense that they are unable to escape from local 
optima, however, when stochastic subgradients are able to incorporate prior in­
formation, it is possible to explore other regions where descent directions can be 
found with a positive probability. In the present work, we extend the stochas­
tic quasigradient method to more general prior information patterns. We also 
provide convergence conditions for this extended method. 

There are in the literature many stochastic optimization methods that 
use a limiting distribution approach; we mention, for instance, Dorea (1991) 
and (1987), de Haan (1981) and Galambos (1978) . In this paper, we obtain a 
limiting distribution representation for the expected information provided by 
the sequence of subgradient estimators generated by the proposed algorithm. 

This paper is organized as follows. In section 2, we define a statistical es­
timator of a subgradient. Section 3, is an outline of the principies of maximum 
entropy and minimum cross entropy. In section 4, we construct both the maxi­
mum entropy and minimum cross-entropy statistical estimator for subgradients 
that incorporate prior information in terms of expectations. Through section 
5, we extend the stochastic quasigradient method to incorporate prior informa­
tion. We also provide convergence conditions for this extension. In section 6, 
by using information theory, we obtain a limiting distribution representation of 
information provided by the sequence of subgradient estimators generated by 
the algorithm. Finally, in the last section, we comment on the advantages and 
delimitations of the obtained results. 

2. Subgradient Estimators 
For a systematic investigation, we first recall the concept of subgradient of a 
convex function which is related to the epigraph and supporting hyperplane 
in optimization theory. We also define a statistical estimator of a subgradient 
when prior information in terms of expectations is available . 

Let g(X), X E lR.m, be a convex function, not necessarily differentiable, 

a vector V g(X) is called a subgradient of g at X if the inequality 

g(Y) - g(X) ;::: (V g(X), Y - X) (2.1) 

holds for ali Y E lR.m . Here, (·, ·) is the usual inner product in the Euclidean 
space lR.m. 

One way to construct a statistical estimator, ~(X), of the subgradient of g 
at X is as follows: Consider a random vector 8T = (81 , 82 , ... , 8m) with inde­
pendent, but not necessarily identically distributed components (a superindex 
T will denote the transposing operation).Let 

8T _ ( (i) (i) (i)) . _ 2 i - 81 , 82 , ... 8m , i - 1, , ... , p, 
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denote a random sample of size p from O. An estimator, ~(X), of a subgradient 
of g at X may be taken as 

( ) 
_ ~ ~ g(X + ~Oi) - g(X) . 

~ X - w ~ O,, 
p i=l 

(2.2) 

where ~ > O is a scalar. In this average the factor [g(X + ~()i) - g(X)]/ ~ 
estimates the rate of change of g with respect to X, and the factor ()i is a 
random vector with prior information expressed through 

'I(O): l ak(0)7í(O)d0 = ak, k = 1, 2, ... , s, 8 e IR.m, (2.3) 

where the functions ªk and tne constants ak's are known. In the seque!, we 
shall use the more convenient notation for (2.3) 

3. Maximum and Mínimum Cross Entropy 
The principie of maximum entropy (Jaynes (1957)) provides a general method 
of inference about an unknown density, 7r(O), when there is new information 
about 7r(O) in terms of expectations. The principie states that of ali compatible 
densities with the new information, we should choose as estimate for 7r(O), 
the one with the greatest entropy. The principie of minimum cross entropy 
(K ullback (1956)) considers, besides new information in terms of expectations, 
an initial estimate p(O) of 7r(O), and in this case, we should choose as final 
estimate for 7r(O), the one with the least cross entropy. Shore and Johnson 
( (1980) and (1981)) have provided an axioma tic derivation, of these principies 
through an abstract information operator. 

The maximum entropy principie is equivalent to the minimum cross entropy 
in the special case of discrete spaces and uniform initial estimates. According 
to Jaynes (1957), to find an posterior estimator of an unknown density func­
tion, 7í(O), () E 8 , when there is prior information 'I(O) , the maximum entropy 
principie leads us to solve the following variational problem: 

Maximize H(7r) = - l 7r(8) log7r(O)d8, 

subject to 'I(O) = {8; 1, a1 (O), a2(B), ... , a8 (0); 1, Ci1, Ci2, ... , a8 }. 

A necessary condition for an estimator 7r* (O) to be a maximum is that 

7r*(O) = exp{ >.o+ ~>.kak(O) }, 

1 - ( 7r*(O)d0 =O, le 
fe [ak - ak(0)]7r*(O)d0 =O, k = 1, 2, ... ,s, 

(3. 1) 
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where .A.o, A1, ... , A8 are the Lagrange multipliers associated to the given con­
straints. Substituting 7r*(O) in the other two conditions of (3.1), we readily find 
that 

{ 

O= AQ - log{fe IJ~=le>.kak(O)d(} }, 

(3.2) 

o= fe [ak(O) - ak] TI~=l e>.kak(O)d(}, k = 1, 2, ... , s, 

which is a homogeneous nonlinear system in the variables AQ, A1, .. . , A8 • More­
over, if the integral determining Ao in the above system can be written in a 
closed form, t~en the rest of the multipliers can be found from the following 
relations: 

8Ao 
8Ak = -ak, k = 1,2, ... ,s. (3.3) 

Following Kullback (1956), to find a posterior estimator of a density func­
tion 7r(O) (} E (}, when we have a prior estimator, p(O), and prior information, 
I(O), we need to solve the following variational problem of minimum cross en­
tropy: 

l 7r(O) 
H(7r,p) = 7r(O) log -(-) d(}, 

e P (} 
Minimize 

subject to I(O) = {8; 1, a1(0), a2(0), ... , a8 (0); l, ii1, ii2, ... , ii 8 }. 

A necessary condition for an estimator 7r* (O) to be minimum is that 

7r*(O) = p(O) exp{ - Ao - ~ Akak(O) }, 

1 - { 7r*(O)d0 =O, le 
{ (ak - ak(0))7r*(O)d0 =O, k = 1, 2, ... , s, le 

Proceeding as in the maximum entropy case, we find 

Similar relations to those of (3.3) also hold here. 

(3.4) 

4. Maximum Entropy and Minimum Cross Entropy Subgradient Es­
timators 

In this section we construct maximum entropy and minimum cross-entropy 
subgradient estimators. We also study a number of prior information patterns, 



Revista Mexicana de Economía y Finanzas, Vol. 2, No. 2, (2003), pp. 175-192 179 

sorne ofwhich have been analyzed in Venegas ((1990a) and (1990b)). We start 
with the following theorem: 

Theorem 4.lLet g be a convex function, not necessarily differentiable at X, 
defined on the whole space JR.m. If 

~(X) = ~ t g(X + ~~) - g(X) Bi, 
p i=l 

as in (2.2), then there exists a symmetric and positive definite (prior informa­
tion) matrix G(I) of arder m X m, anda vector g(X,I) E JR.m, g(X,I) 2 O, 
such that 

E{~(X) J X, I} = G(I)Vg(X) + g(X,I). 

The matrix G(I) has entries 

( 4.1) 

when there is prior information I( B). M oreover, when there is a prior estimator 
p(B) as well as prior information I(B), G(I) takes the form 

( 4.2) 

Proof: By virtue of (2.1), for each i = 1, 2 ... , p, we have 

g(X + ~Bi) - g(X) B· >(V (X) B·)B 
~ • - g , • ., 

hence 

{
g(X + ~Bi) - g(X) } { ~ } 

E ~ ()i J X, I 2 E (V g(X), Bi) Bi J X, I . 

The product (Vg(X),Bi)Bi may be written as H(Bi)Vg(X), where the matrix 

H(Bi) has entries Ht(Bi) = ()~i)o)il, i!,j = 1, 2, ... , m . Thus, 

E { g(X + ~~) - g(X) ()i 1 X, I} 2 E {H(Bi) 1 I} V g(X). 
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Notice now that the matrix E {H(Bi) 1 I} is independent of i, so we may write 

E {H(Bi) 1 I} = G (I) 

for all i = 1, 2, ... ,p. From (3.1) and (3.4) we obtain (4.1) and (4.2), respe_ctively. 
The conclusion follows then by summing on i and dividing by p. - ·o 

The previous theorem allows us to write 

E{G - 1(I).;(X) 1 X , I} = Vg (X) + h(X,I), ( 4.3) 

where h(X, I) = c -1(I)g(X,I) is the conditional bias of .;(X), we shall visit 
this result in the next section. We now work on a number of applications of 
theorem 4.1. 

Example 4.1 (Applications of Theorem 4.1) 

In the following cases there is not a prior estimator: 

( i).Suppose that prior information about dcscent directions are likely to be 
found is around a point µ = (µ 1, µ 2 , . . . , J~m) within a standard deviation up_ for 
each componente = 1, 2, ... , m. That is, 

I(B) = {1Rm; B, (B - µ)(B - µf; µ, ~}, 

where ~ = [uJl~ 1 is a diagonal matrix. In such a case, we have G1.j(I) 
ui + µ¡, e= j, and Gtj(I) = µ¡, e =1- j. 
( ii). Assuming that prior information is given by 

I(B) = {lR:'; B,logB1 1 ••• ,logBm; a1,61 1, ... ,am,B;1, 

1/J(a1) - log,61, ... , 1f1(am) - log ,Bm, } , 

where lR:' = {X E 1RmlX > O} , a1., ,Be > O, and ¡/J is the digamma function 
(see, for instance, Gradshteyn and Ryzhik, 1980). In this case, we find that 

{ 

ap_(l + ap) . 
/32 , e= J, 

Gp-(I) = · P 
J apa · 

__ 1, e =1- j. 
f31.,6 j 

( iii) If prior information has the form 

I(B) = {lR:'; logB1, ... , logBm,Bf1, ... , B~"'; 

811 [1/1 ( a1) - log /31], ... , 0;1 [1/1 ( °'m) - log /3mJ, ,611) . .. ',13;1} 
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where ae, fJe, óe > O, then G (I) satisfies 

r(aefJe + ó¡
1
) ( f3 )ªe - cxef3e-2t5¡ 1 

f(ae) ae e ' f = j, 

r(aefJe + ó¡1)f(aj(Jj + ój1
) 

~~~~~~~~~--''--- X 

r(ae)r(aj) 

X (aef3e)ªe - cxef3e-t5¡1 (ajf3jtj-cxjf3j - t5j 1' f i= j . 

Example 4.2 (Further applications o f T heorem 4.1) 

Suppose that prior information is that Be is in sorne region Ge = (bie, bse+1). 
Suppose also that we assign weights, /'U, /'2e, ... , í'se 2 O, (2::~~ 1 /'ke = 1), to the 
events that Be belongs to the subregions Akl = (bke, he+i], k = 1, 2, .. . ,se - 1 
and Ase = (bse,e, bse+1), with bu < b2t < · · · < bse+l, se 2 2, which constitute 
a partition of Ge= (bu, bse+1). Thus, prior information can be written as 

se 
k = 1, 2, ... ,se, :¿: í'ke = i. ( 4.4) 

k= l 

If we use the maximum entropy principle, the necessary conditions given in 
(3 .2) are transformed into 

If we now define the change of variable 

then ( 4.5) is transformed into the homogeneous linear system: 

¡-] uu u2e 
-1 vu o 
-1 o v2e 

- 1 o o 
"~·1 r ~:: i r:i, 
Vse Wse O 

( 4.6) 

where uke = fee IAke(Be)dBe, and Vke = í'"k/uke, k = 1, 2, ... ,se. We denote 
the matrix in ( 4.6) by Me. We shall see that this matrix also plays a role 
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in cross-entropy minimization (ej. Venegas, 1992). The determinant of Me is 
given by 

( ¿~~1 lki - 1) n se . 

nse k=I Ukf , 
k=I /ki 

notice that 2:~~ 1 /ki = 1 guarantees the existence of a nontrivial solution. 
After solving the homogeneous linear system ( 4.6) we find 

If we now assume that there is a prior estimator, say, 

se 

p(Oe) = Lf3keu"kl lAke(Oe), Oe E 8e, 
k=I 

where f3ke > O, k = 1, 2, ... , s, 2:~~ 1 f3ke = 1, and with prior information as 
expressed in (4.4), that is, prior information expresses changes in the weights. 
Then, by using the same change of variable as before in (4.6), we obtain a 
homogeneous linear system in terms of M e, namely, 

( 4. 7) 

where n = (woe,WH, ... ,Wse)T ando is the zero vector. Here, the information 
provided by the initial estimate is incorporated through the diagonal matrix in 
(4.7). In this case, the solution is 

in which case the prior estimator has no effect on the posterior one. Therefore, 
the prior information matrix G(I) remains unchanged. 

Example 4.3 (Redundant Prior Information) 

Suppose that we have initial information on (} in the form 

I(O) = {IR~; O; 13¡-1, ... f3;;/ }, /3e > O. 

In this case 

(4.8) 



Revista Mexicana de Economía y Finanzas, Vol. 2, No. 2, (2003), pp. 175-192 183 

If we include additional prior information in ( 4.8) such as follows: 

I(O) = {lR¡'; O,log01, ... ,logBm; .B11, ... ,,B;1;-K-log,81, .. . , - K-log,Bm, }• 

( 4.9) 
where ,81. > O and K(r::o::, 0.5772) is the Euler constant, then we have no change 
in G(I), so the added information is redundant . 

Of course, additional prior information is not always redundant. Suppose 
now that we include, instead, additional prior information in (4.8) as follows: 

I(O) ={ lR¡'; O,log01,. . .,logOm; .811 .. .,,8;1, 

7/J ( n1) - log n1.B1, .. ., 7/J( nm) - log nm.Bm}, 

where ap_, ,81. > O, then the prior information matrix have the form 

Example 4.4 (How sensitive is the prior information matrix?) 
Suppose that we have initial information on (} and it is given by 

Then the maximum entropy solution for 7r*(B1.) is 
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and matrix G(I) can be obtained by proceeding as in (4.9). If we include 
additional prior information on B in ( 4.10), so that 

I(B) = {IR¡-; B,logBi, ... ,logBm; ,e;"\r(l+a11), ... ,8~"~r(l+a;;,1 ), 

'lj! [r( l + a11 )] - a!1 log ,81, ... , 'lj! [r(l + a;;,1 )] - a;;,1 log ,Bm} 

(4.11) 
where ae, /Je > O. Then the solution of the maximum entropy variational prob­

..L 
lem, 7r*(Be), is the Gamma distribution with parameters ,B¿"t, and r(l + a¡1). 
The matrix G(I) can be obtained by proceeding as in (ii) in Examples 4.1. 

Now, let us see what happens to G(I) ,if instead of (4.10) we set 

I(B) = {IR¡-; B, log81, ... , logBm, 80: 1
, ..• ,ea:=; 

,e - iT(l + a!1), ... , ,e - iT(l + a;;-,1), 

- a11(K-log,81), ... , - a;;,1(K- log,8m), ,811, ... ,,B;;,1}, ae,,Be >O. 

Then the maximum entropy density for Be is the Weibull distribution with 
parameters a¿ and ,8¿,that is 

and the prior information matrix is 

This example shows how sensitive is the prior information matrix G (I) to 
changes when additional prior information is included. 

5. A Stochastic Quasigradient Method with Prior Information 

In this section we extend the stochastic quasigradient method to incorporate 
prior information. We also provide the convergence conditions for the extension. 
Our goal is to solve the problem: 

{ 

Minimize g(X), 

subject to X E C, 
(5 .1) 

where g is a convex, but not necessarily differentiable, function defined on the 
whole space IRm. To solve (5.1) when there is prior information, we shall 
generate a random sequence of points Xk , one at each iteration, such that 

Po{ lim g(Xk) = g(X*) }=l. 
k --> oo 
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where X* salves (5.1). At iteration k we define the random vector 

where X 1 is an arbitrary initial point in lRm. 

Example 5.1 (Reconsidering Example 4.1) 

(i). Consider (i) in Example 4.1, and suppose L;k = [a]k]~ 1 where D"fk -+ ae, 
as k -+ oo, for every f. Then, 

(5 .2) 

as k -+ oo. 

(ii). In (ii) in Examples 4.1, consider sequences of positive numbers {aek}k=l 
and {,Bek}~ 1 such that °'fk -+ ae and .Bek -+ ,Be, as k -+ oo, for each f.= 1, ... , m. 
Then (5.2) holds. 

(iii). In Example 4.2, define 8ek = (bi~), b~~~ 1 ), where bi~) -+ bH, and b~~~l -+ 

bse+l, as k -+ oo, for every f. = 1, ... , m. Then (5.2) is satisfied. 

In all ofthe above examples we have that the sequence {llG(Ik)- 1 11 }~ 1 is 
boundcd. It is worthwhile to point out that, in general, from one iteration to 
the next we may find that g <loes not diminish, so further assumptions on the 
step parameter °'k have to be made. We shall be interested in the special case 
when °'k = k- 1 , k = 1, 2, .. . 

The following convergence conditions, although somehow strict, are easy 
to follow making the proof reasonably straightforward. 

Theorem 5.1 Consider the random sequence 

and suppose that: 

( i). Th ere exists a constant A such that 

(ii). e is a convex compact set in JRm. 
( iii) . There exists a constant B such that 

( iv) . There exists a constant C such that 

llh(Xk, Ik) 11 ~ C, for ali k = 1, 2, ... 
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Then 
Po{ lim g(Xk) = g(X*) }= 1, 

k-<oo 

where X* salves (5.1). 

Proof: Let X* be an arbitrary solution of problem (5.1), then 

11 X * - x k+ l 11
2 :S 11 X* - xk + k - 1 G('.Ik)- 1~(Xk) 11

2 

= 11 X * - Xk 11 2 + 2k-1 (G('.Ik)- 1 ~(Xk), X* - Xk) 

+ k- 2 11 G ('.Ik)-1 11 2 11 ~(Xk) 11 2 
· 

Taking the conditional expectations at both sides of the above inequality we 
get 

E{ll X * - Xk+l 11
2 1 xk,'.Ik} :S ii X * - xk 11

2 +2k-1(Vg(Xk) ,X* - Xk) 

+ 2k - 1(h(Xk.'.Ik), X* - X k) 

+ k - 2 11 G('.Ik) - 1 
11

2 E{ll ~(Xk) 11
21 Xk ,'.Ik} . 

(5.3) 
Notice now that from (2.1) 

(V g(X*), X * - Xk) :S g(X*) - g(Xk) :S O. (5.4) 

Hence, by using in (5.3) the Cauchy-Schwartz inequality, conditions (i) , (iii) , 
(iv) and (5.4) , weobtain 

From the compactness of C, it follows that E{ ll X* - X k+1 11 21 Xk ,'.Ik} is 
uniformly bounded. Furthermore, from (5.3) 

k 

E{ \\ X * - xk+l 11
2 1Xk,'.Ik} :S E11 X* - X1 11

2 +A 2 B ¿ c2 

i=l 
k 

+ ¿ c1E( Vg(Xi), X * - Xi) . 
i=l 

Since E{ ll X * - Xk+l 11 21 Xk , '.Ik} is uniformly bounded and z=:1 i-
1 = oo , we 

must have that 
00 

¿ c1E( Vg(Xi), X * -Xi) > - oo. 
i=l 

Thus, E ( V g(Xi), X * - Xi) ---+ O as i ---+ oo. Hence, there exists a subsequence 

ie such that (V g(Xie), xie - X *) ---+ o with probability 1 as f, ---+ OO. Therefore, 
X ie ---+ X * with probability 1 as f ---+ oo. By the continuity of g, we have that 
g(Xie) ---+ g(X*) with probability 1 as f,---+ oo, which completes t he proof. o 
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Corollary 5.1 Under the hypothesis of theorem 5.1, instead of assuming con­
dition ( iii), we now assume that: 

( iiia) . There exists a constant B1 such that 

m 

¿var{eJ(xk) 1 Xk, Ik}:::; B1, for all k = 1, 2, ... 
j = l 

where eJ(Xk) is the j-th component of e(Xk)· 

( iiib). There exists a constant B2 su ch that 

Then 
Pe{ lim g(Xk) = g(X*) }= 1, 

k->oo 

where X* salves (5 .1). 

Proof: It is enough to notice that 

m 

j = l 

6. Asymptotic Expected Information 

o 

In this section , by using information-theoretical arguments, we state a limit­
ing distribution representation for the expected information provided by the 
sequence of subgradient estimators generated by the proposed algorithm. 

Let Pe denote the distribution of e(X) . Assume that e(X) has a density 
.f (e!B) (a Radon-Nikodym derivative) with respect to sorne fixed dominating a­

finite measure .\ on R, for all B E 8 e Rm, that is, dPe/d.\ = f (e¡B), for all B E 

8 e 1Rm, so Pe(A) =JA .f (elB)d>-(.;), for all Borel sets A E 1R. Accordingly, a 
random vector Wk = (.;i(Xk), 6(Xk) , ... , ek(Xk))T , with k independent obser­
vations from .;(Xk),has density, 

k 

dPe/dv = .f(\liklB) = IJ .f(en(Xk)IB), 
n=l 

for all B E 8 e;;: 1Rm ,where 

Pe = Pe@ Pe@···@ Pe , and v = ,\@ ,\@ · · ·@ ,\ on 1Rk. 

k times k times 

Following Shannon (1948) and Lindley (1956), a measure of the expected 
information provided by Wk when the prior distribution of Bis 7r(B), is defined 
to be 

(6.1) 
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where 

(6.2) 

In order to obtain an asymptotic representation for (6 .1), which includes Fi­
sher's information function and the Gaussian distribution, we need to prove 
sorne limit theorems concerning its integrand and justify the passage of the 
limit under the integral signs. We start by writing (6.1) as: 

where 

and 

H1r(e) = - j 7r(e) log7r(e)dµ(e), 

f(ll!k le + 7,;) 
Tk(w) = f(ll!k l()) ' 

(6.4) 

(6.5) 

(6 .6) 

Expression (6.4) is known as Shannon's information measure about () when its 
density is 7r(e). 

We now state a general limit theorem, which will lead us to the normal 
convergence of the stochastic process (6.5). We restrict ourselves, for the sake 
of simplicity, to m = s = p = 1, that is, () E 8 <:;;; lR and X , .;(X) E lR. 
Everywhere throughout, both .A and µ will stand for the Lebesgue measure 
on JR. Also, we shall always assume that all densities involved are Lebesgue 
measurable in both arguments, .;(X) ande. 

Theorem 6.1 Assume that .fkn(.;¡e), n = 1, 2, ... , k, k = 1, 2, ... , are the 
corresponding densities of the elements of a triangular arra y .;kn = .;n (Xk), 
n = 1, 2, ... , k, k = 1, 2 .. ., where each row consists of independent random vari­
ables. Assume also that the corresponding distributions Pkn ,O are absolutely 
continuous with respect to .A far all () E 8, and that the following set of condi­
tions are satisfied: 

( i). e is an open interval in JR. 

Far every k and n = 1, 2, ... , k , we have 

(ii) . {x lfkn(.;le) >O} is independent aje . 

(iii) . fj(),()' E 8 , then () #- ()' implies .A{.;ifkn(.;i()) #- Íkn(.; le')} > Ü. 
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(iv). Far all 8 >O, and all ()E 0 

where Bkn,ó(:/¡) = {~: IJ.tkn(~I() + :/¡) - J.fkn(~ I B) 12: 8Jfkn(e!B)} · 

(v) There exists a randam variable X with density .fx(e!B) such that 

W.fxWB) >O} 

is independent af (), te log .f x(e!B) exists far all () E 0 and every ~, and 

far all () E e, where 4 J( te J .f xWB) ) 2 d.>-(~) = 'I(B) > o is a baunded function 
af B. Let 

and define Fkn(Y) = Pkn,e{Ykn(w):::; y}. Then, the fallowing conditians hald: 

Far all E > O, as k _, oo 

k 

L r dFkn(Y) = o(l); 
n = l } ¡yl?.• 

Far same ¡ > O, as k _, oo, we have bath 

k 

L ¡ Y dFkn(Y) = - ~w 2'I(B) + o(l) 
n = l IYl<I' 

and 

(6.7) 

(6.8) 

(6.9) 

Comments: Conditions (i)-(iii) are quite standard, and conditions (iv)-(v) are 
bounded-variance conditions. The function 'I(B) appearing in (v) is usually re­
ferred as Fisher's information measure about () provided by a single observation 
of X with density .fx(e!B). We also observe that the triangular array {~kn}, 
n = 1, 2, ... , k, k = 1, 2, ... , induce a triangular array {Ykn(w) }, n = 1, 2, .. . , k, 
k = 1, 2, ... , where each row also consists of independent random terms. The 
general ideas of the proof of Theorem 6.1 can be found in Venegas (1990). 
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Conditions (6.7)-(6.9) satisfy the Kolmogorov t hree-series criterion for normal 
convergence (see, for instance, Loeve, ch. VI),implying 

as k-> oo. o 

Next, we shall state the limit conditions, so that the passage of the limit 
under the integral signs in (6 .1) holds. From the notation in (6.5) and (6.6), it 
will be convenient to introduce the random variable Uk = f Tk(w)Wk(';'J)dµ(w). 

Theorem 6.2 Under the conditions of Theorem 6.l, assuming also that: 

( vii) There exist e > O and T > O such that 

(6.10) 

( viii) Far all f3 > O, as k -> oo 

{ ( rk(w)Wk(w) - Tk(w))dµ(w)__.!'.._.0; 
Jlwl >kf3 

(6.11) 

( ix) The sequence of random variables {log U k} ~=l satisfies 

lim sup l llogUkldP=O, 
a-.oo n;:::1 llogUkl;:::a 

(6.12) 

(6.13) 

where H (Z) is Shannon's information measure of a random variable Z '"" 
N(O, 1) and Ik(B) = kI(B) is Fisher's information measure about B. 

Comments: Condition (vii) is a smoothness condition, and (viii) is a conver­
gence condition. Condition (ix) simply says that the sequence of random vari­
ables {log Uk}~1 is uniformly integrable with respect to P. 
Proof: Let E> O be arbitrary, then from Tchebyshev's inequality and (6.10) 

2ck(T+l)¡3 
< ----

Ek~ 
(6.14) 
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Choosing (3 > O such that (1 + T -
1 )(3 < ~ and letting k -+ oo m (6.14), we 

conclude 
k/3 

[k/3 (rk(w)Wk(w) -Tk(w))dµ(w)~O. (6.15) 

Hence, from (6.11) and (6.15), we obtain 

(6.16) 

as k-+ oo . 
On the other hand, from Theorem 6.1, as k-+ oo 

J Tk(w)dµ(w)...!:...., J exp{U(w,B)[Z - ~U(w,B)]}dµ(w) = ~ e~z2 • (6.17) 

From (6.16) and (6.17), and the continuity of the logarithmic function on (O, oo), 
we arrive at 

(6.18) 

Finally, from (6.12) and (6.18) we obtain (see, for instance, Billingsley, ch. 
1),ask -+ oo 

J J (log U k)f ('I! k IB)7r( B)dv('I! k)dµ( B) 

= J f (1og~+~z2)M>(z)7r(B)dµ(B)+o(l) 

= H(Z) - J 7r(B) log jI(i}dµ(B) + o(l), (6.19) 

where <P is the distribution of a random variable Z rv N(O, 1). The last equality 
in (6.19) transforms (6.1) into (6.13). o 

7. Summary and Conclusions 

We have extended the stochastic quasigradient method to incorporate prior 
information. A number of prior information patterns has been studied. The 
convergence conditions, although somehow strict, are easy to follow making the 
proofs reasonably straightforward. We have obtained a limiting distribution 
representation for the expected information provided by the sequence of sub­
gradients generated by the algorithm. Our work misses, however , to analyze 
the case when B consists of dependent random variables. More work has to be 
done in this direction. 
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